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INTRODUCTION 

The proposed work has two objectives coordinated to fulfill the 

overall objective of improving quantitative estimates of 

locomotor metabolism and activity in field settings.  The 

objective of the first portion of the experimental work is to 

develop generalized equations that relate height, weight and 

speed to the metabolic rates incurred during walking.  Fulfilling 

this objective will involve assessing whether the generalized 

equations provided by our new gait mechanics model will predict 

the metabolic cost of weighted and unweighted walking more 

accurately than existing generalized equations under controlled 

conditions.  Our second objective is to determine how accurately 

weighted and unweighted walking metabolic rates can be estimated 

in field settings using simple, inexpensive wearable 

technologies.   

Metabolic rates will be measured from expired gases.  The timing 

of each walking stride, as well as its subcomponents (i.e. the 

contact and leg swing portions) will be determined from video 

and/or ground reaction force data.  In addition, the periods of 

muscular activity responsible for executing the movements of the 

walking stride may be assessed from electrical activity using 

surface electrodes attached to the skin above target muscles.  

The forces that subjects apply to the ground during locomotion 

may be measured from either a force plate or force sensors built 

into a treadmill.  Finally, miniature motion sensors and 

geolocation devices mounted to the shoe or other parts of the 

body to measure movement speeds and rates will also be utilized. 

 Field trials will be conducted using lightweight, portable 

indirect calorimeters.  Subjects will walk both with and without 

weighted backpacks during both the laboratory and field trials. 

BODY: 

The total number of subjects tested during the project period was 

sixty-four.  Per the statement of work, the project has focused 

on model testing and development for the following objectives: 1) 

to use our walking metabolism mode to develop a generalized 

equation provided to predict the metabolic cost of walking more 

accurately than existing generalized equations, 2) to estimate 

how accurately weighted walking metabolic rates can be estimated 

in field settings from simple technologies, and 3) to use our 

walking metabolism model in conjunction with heart rate data to 

attempt to develop a walking test of aerobic fitness.  

Thirty-six of the subjects tested completed resting metabolic 

rate tests, walking metabolism tests and maximal aerobic 

metabolism tests.  The experimental; progression has revealed 
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that quantifying resting metabolic rate is an important for 

accurate interpretation and understanding of walking metabolism. 

 This recognition, made possible by the award, led to the 

literature test of our walking metabolism (also Height-Weight-

Speed) model detailed below.  Accurate quantification of the 

influence of walking metabolism is also essential for accurately 

quantifying the influence of loading on walking metabolic rates. 

The understanding of loaded walking remains in progress and 

cannot be accurately understood in the absence of a full 

quantitative understanding of the influence of resting metabolism 

and its variability across individuals. 

At the close of the award period, we had greatly improved and 

refined our height-weight-speed model for predicting walking 

metabolic rates.  Doing so also advanced our efforts to develop 

an aerobic fitness assessment procedure that relies on our 

walking model and steady-state heart rates.  The procedure 

requires only a brief walking test of roughly five minutes.  

We also had a manuscript accepted on high-speed running that was 

made possible by the support provided over the course of the 

award.  Our work on refinements to our walking model also 

continues using the literature-based approach described in prior 

reports. 

A working schematic of our Height-Weight-Speed model appears 

below in Figure 1.  Some of the results following in this report 

have been presented below were provided in prior reports.  Per 

previously, our stature-inclusive metabolic model is performing 

well, accounting for 94% of the variability in walking metabolic 

rates between individuals and across speeds per the illustration 

in Figure 2 (with an SEE of 1.07 mls•kg
-1
•min

-1
).
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Figure 1.  The Height-Weight-Speed model of walking metabolism; the above schematic illustrates the 
theorized metabolic components of walking metabolism in relation to walking speed.   The model provides 
accurate predictions of metabolic rates during level walking from height, weight and walking speed. 
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Figure 2.  The agreement between measured and predicted rates of oxygen uptake (n=34 subjects) at six 
different treadmill walking speeds from 0.4 to 1.9 meters per second. 
 

Also, per prior reports, we have had 21 subjects complete a 

three-speed protocol on level asphalt with metabolic measurements 

being acquired using the Douglas bag technique.  The agreement 

between the treadmill data from the laboratory and the over-

ground data for these subjects is illustrated in Figure 3 below. 
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Figure 3.  The agreement between treadmill and over-ground rates of oxygen uptake (n=21 subjects) at 
three walking speeds: 1.0, 1.3 and 1.6 meters per second. 

The predictions provided by our stature-based model on the over-

ground pavement trials thus far completed appear below in Figure 

4.
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Figure 4.  The agreement between measured rates of oxygen uptake (n=21 subjects) during over-ground 
walking on pavement at 1.0, 1.3 and 1.6 meters per second vs. the rates predicted by our stature-based 
model. 
 

 

Also, per prior reports, we present the condition-agreement of 

the walking metabolic rates of the 10 subjects who completed both 

treadmill and grass-field testing below in Figure 4.  We found 

that walking on grass elevated the metabolic cost of walking by 

5-10% with a slight speed-dependency. Therefore, our treadmill-

based model under-predicted the metabolic rates measured on 
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grass.  However, the re-optimized model does provide a good fit 

to the grass data per the figure. 

 

 

 
 

 

Figure 4.  The agreement between measured rates of oxygen uptake (n=21 subjects) during over-ground 
walking on pavement at 1.0, 1.3 and 1.6 meters per second vs. the rates predicted by our stature-based 
model. 
 

In the coming months, we will continue to refine our walking 

model and algorithm for predicting aerobic fitness from a walking 

protocol.  The primary current focus is on the first of the two 

predictive steps of our walking metabolism model.  In the latter 

portion of the project, we have compiled literature data to 

supplement our original data to better evaluate the validity of 

the model.  The literature data set was compiled to include a 

broad range of heights, weight and walking speeds.  The data set 

includes 129 population means for walking metabolism.  These 

means were compiled from groups with disparate mean height and 

weight values. 
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Figure 5.  Rates of oxygen uptake vs. speed during unloaded walking (panel A, n=129).  Each data point 
represents the mean value acquired from a population of subjects walking on a firm level surface.  The data 
set includes both over-ground and treadmill data.  The three symbol types for group 1 (circles), group 2 
(squares) and group 3 (triangles) are for short, medium and tall subjects.  The overall mean values for all 
the subject groups within the three respective height ranges appear in panel B. 
 
 
Per our last report, we are also attempting to develop simplified 

approaches to predicting resting metabolic rate based on specific 

power equations that require only body mass and sex. These 

relationships are important for practical prediction of the gross 

metabolic rates during walking since the resting fraction of the 

total is typically one-third. 

 

The above analysis is being is being prepared to further develop 

and refine our model of walking metabolism per above.  This work 

remains in progress but this portion is close to completion.  The 

literature acquisition approach has proven to be a critically 

effective approach for further development, validation and 

refinement of our walking metabolism model. 

 

Our procedural approach to the literature test and refinement of 

the model was as follows: 

 

Experimental Design: We adopted a literature compilation approach 

to evaluating the relative accuracy with which different models 

predict human walking metabolism for several reasons.  First, the 

existing literature is now sufficiently expansive to 

comprehensively incorporate the influences of height, weight, and 

speed on walking metabolic rates.  Second, the use mean data from 

small-populations, rather than individual values is likely to 

insulate the analysis from the skewing effects individual 
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outliers and aberrant data points can have.  Third, the 

aggregation of means from many studies should mitigate 

measurement or condition-specific error from individual studies. 

 Fourth, the use of older, well-established studies should ensure 

the relative validity of the population means included.  Finally, 

contemporary digitizing techniques allow data published in 

graphic form to be extracted with a high degree of accuracy.  

Collectively, these factors should allow for the aggregation of a 

robust and powerful data set for investigating the energy cost of 

level human walking. 

Hypothesis Tests One and Two: Based largely on the prior results 

reported on 78 individuals who spanned a broad range of body 

sizes, we expected the following two hypothesis test outcomes.  

First, we expected that the error of prediction (SEE) would, on 

average, be twice as large when the walking portion of the body’s 

total metabolic rate was modeled with one non-resting metabolic 

component rather than two.  Second, we expected that the error 

with which the aggregated literature means would be predicted by 

the ACSM and Pandolf et al. equations would be two times larger 

than the corresponding error of prediction of the HWS model 

equation, again using the standard error of estimate (SEE) 

statistic.  Further, as a general standard for goodness of fit 

(i.e. accurately capturing both speed and size variation) we set 

a rough a priori threshold of R
2
 ≥ 0.90.     

Data Set Criteria: Our literature data set was strategically 

aggregated to fully encompass the influences of height, weight, 

and speed on human walking metabolism.  The criteria determining 

whether the literature values available qualified for inclusion 

were as follows.  First, the mean height and weight of the group 

had to be reported in the original work.  Second, metabolic means 

from a sufficient number of speeds to provide a minimum value for 

the energy expended per unit distance, or metabolic cost of 

transport, also needed to be available.  Third, to avoid speeds 

in the walk-run transition range that were too fast to be true 

walking speeds, we implemented a standardized maximum-speed cut-

off using an analogue of the Froude number: 

 

                             (1) 

 

where walking speed is in units of m∙s
-1
, height is in meters, 

and g is the gravitational constant in m∙s
-2
.  The Froude number 

is widely used to quantify speeds that are equivalent for walkers 

and runners who differ in body size.  The standard Froude index 

does so using leg length.  Here, as previously, we used a Froude 
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number analogue that substitutes height for leg length because 

studies on walking metabolism generally report the height means 

of the groups tested, but often do not report leg length.  

Finally, we did not include data from individuals ≥ 65 years of 

age because the metabolic cost of walking is elevated in elderly 

subjects (Ortega and Farley, 2007) for reasons that have not yet 

been identified. 

Digitizing Process: Group mean values were acquired from the 

tables or figures in prior publications.  Those data points 

acquired from figures were digitized in accordance with the 

highly accurate techniques now available (Sistrom & Mergo, 2003; 

de Oliveira et al., 2003).  Original illustrations were enlarged 

and oriented on a grid to allow precision vertical and horizontal 

line fits to the data point of interest.  Line fits were extended 

to the X- and Y-axes to determine the x and y values for each 

data point.  Data point values were also determined using an 

automated digitizer (Web Plot Digitizer, Rohatgi, 2013). 

Data Set Characteristics: Using the inclusion criteria specified, 

our literature search from the early 1900’s to the present 

yielded 25 subject groups from 10 publications spanning a 50-year 

period from 1960 to 2010.  The number of subjects per population 

group ranged from 5 to 42.  Age means ranged from 5.2 to 40.7 

years, height means ranged from 1.03 to 1.82 meters, and body 

mass means ranged from 18.9 to 78.0 kilograms.  

Walking Metabolism Models: The specific forms of the one- and two 

metabolic components used to model the walking, or non-resting 

portion of gross walking metabolism, were guided by both the 

primary literature traditions and our recent modeling efforts.  

Our recently introduced HWS model of walking metabolism appears 

schematically in Figure 1.  Mass-specific rates of oxygen uptake 

appear on the Y-axis, while walking speed appears on the X-axis. 

 The two non-resting components into which this model partitions 

walking metabolic rates are a minimum walking metabolic rate, and 

a speed-dependent metabolic rate.  Partitioning gross or total 

metabolic rates into a baseline component that corresponds to 

resting metabolic rate and an exercise component is a common 

practice.  However, the HWS model is atypical in dividing the 

walking component of the body’s total metabolic rate into two 

aforementioned components: a constant, predominantly postural 

component and a second speed-dependent component.  The novel 

component of the HWS model, the minimum walking metabolic rate, 

describes the support and postural costs of the walking movement 

and is independent of walking speed.  The speed-dependent 

component quantifies the simultaneous influences of walking 

speed, height, and gait mechanics as previously described.  The 
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HWS model incorporates body mass into the denominator of each 

metabolic component and takes the following form: 

 

 

where VO2-gross is the body’s total rate of oxygen uptake, VO2-rest 

is the body’s supine resting rate of oxygen uptake, C1 is a 

coefficient that describes the minimum walking rate of oxygen 

uptake as a multiple of the resting rate, and C2 is a coefficient 

describing the speed-dependent increases in the rate of oxygen 

uptake as a function of walking velocity, V, raised to the 

exponent, exp, divided by the height (Ht) of the individual.  

Hence, the sum of the model’s second and third components 

represents the metabolic rate attributable to walking (VO2-walk).  

 All the terms in Eq. 1 are expressed in mass-specific units of 

oxygen uptake of mls O2•kg
-1
•min

-1
 in accordance with literature 

convention.  Per our scientific objectives, Fig. 1, Eq. 1 and our 

previous work, the term metabolic rate is used to refer to mass-

specific rates of oxygen uptake throughout.  

Resting Metabolic Rates: The resting portion of the gross or 

total walking metabolic rates in our literature data set was 

determined on the basis of height, weight, gender and age for 

each of the 25 population means using the prediction equations of 

Schofield et al.  These equations have been extensively validated 

and are known to predict resting metabolic rates with a high 

degree of accuracy, typically in the range of 0.5 mls O2∙kg
-1
∙min

-

1
 (Input refs from Walk EE methods).  Because all of the 

predictive models tested incorporated the same Schofield-derived 

RMR quantity, this portion of the total or gross metabolic rate 

attributed to RMR was held constant across all the model types 

tested. 

Modeling Iterations, Analyses and Equations.  Models of three 

basic forms for describing the metabolic rate vs. walking speed 

(V) relationship were evaluated: linear (V1.0), exponential 

(V2.0) and exponential with an inverse relationship to height 

(V2.0/Ht).  For each of three model types, both one- and two- 
component versions were derived.  The procedures used to 
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determine the best fits of these model forms to the literature 

data set are described below. 

Model Best-fit Procedures:  For each of the three basic model 

forms, separate model versions were derived, a first that treated 

net walking metabolism as a single entity, and a second that 

partitioned walking metabolism into two components: a constant, 

largely postural component and a separate speed-dependent 

component in accordance with the schematic in Figure 1.  For 

consistency and ease of interpretation, the postural component of 

walking metabolism was modeled the same way across all three 

model types, specifically as a multiple of the RMR, therefore 

equal to the quantity: C1•RMR per the above equation.  

In order to maximize the fit of each model to the population mean 

values in the aggregated literature data set, coefficients were 

derived that provided the best fit (i.e. highest R
2 
value) across

the 127 values included.  The coefficient describing the minimum 

walking metabolic rate (C1) in the two component models, and the 

coefficient describing the speed-dependent walking metabolic rate 

(C2) in all models were optimized to minimize the sum squared 

error values.  The optimizer function in Excel was used as 

previously described (Weyand et al, 2013) due to its ability to 

optimize a coefficient while holding other values, such as 

estimated resting metabolic rate, walking velocity, and height 

fixed at their known values (Fvlstra et al. 1998; Microsoft Excel 

Solver, Excel 2010 version).  Equations in each of the six model 

forms were optimized to best fit walking VO2 values for the 

literature data set.  

In order to maximize predictive accuracy of a given equation, 

coefficients were derived such that the fit of the predicted data 

most closely matched the data points pulled from the literature 

sources (i.e. highest R
2 
value) across the wide range of height,

weight, and walking speeds.  The coefficient describing the 

minimum walking metabolic rate (C1) in the two component model, 

and the coefficient describing the speed-dependent walking 

metabolic rate (C2) in all models were optimized to minimize the 

sum squared error of prediction.  The optimizer function in Excel 

was used due to its ability to optimize a coefficient while 

holding other values, such as estimated resting metabolic rate, 

walking velocity, and height fixed at their known values (Fvlstra 

et al. 1998; Microsoft Excel Solver, Excel 2010 version).  Once 

best-fit equations were derived, they were used to predict 

walking VO2 values for all 127 literature data points and 

subsequently plotted against walking speed.  

We also tested a 7
th
 predictive model in which the minimum

walking metabolic rate was treated as a constant absolute value 

across all group means rather than being modeled as a multiple of 
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the group-specific RMR values.  In this case, the equation was 

comprised of resting metabolic rate, a coefficient (C1), and a 

coefficient (C2) times walking velocity squared divided by 

height.  

Data Set Categorization by Stature: The 127 values for small 

population group-mean metabolic rates in our aggregated data set 

appear in Figure 5A as a function of walking speed.  The 

influence of height on gross walking metabolic rates led us to 

classify these values by stature, using a three category scheme 

of: short, intermediate, and tall.  These stature classifications 

were not necessary for, and indeed were not part of, our formal 

hypothesis tests.  Rather, we implemented these classifications 

to allow for visual evaluation of whether the different models 

tested fit the walking energy expenditure values equivalently 

across the different stature means present in the data set, or 

were biased toward shorter or taller individuals (Table 2).  The 

stature means of the populations in the short, intermediate, and 

tall groups were: 118.0 ± 3.6, 141.0 ± 2.4, and 171.5 ± 1.9 cm, 

respectively. 

Also, for graphical purposes we determined representative 

metabolic rate vs. speed relationships as follows.  Within each 

height classification group, we averaged the literature metabolic 

rate data points acquired to determine values at or near 5 

speeds: 0.5, 0.8, 1.0, 1.3, 1.6 and 1.8 m•s
-1
.  The exact speeds 

for the respective height groups varied slightly in accordance 

with the different protocol speeds administered in the different 

literature sources.  This process allowed us to formulate trend 

lines for the metabolic rate vs. speed that corresponded to the 

literature values for each of the three respective height 

classification groups (Figure 5B).  These trend lines were 

formulated to provide visual references to assess how well the 

best-fits derived for each of the six different model forms we 

tested accounted for the stature and speed-related variation 

present in the metabolic rate means in our aggregated literature 

data set.   

Predictive Accuracy - Height-Weight-Speed Model vs. ACSM & 

Pandolf et al.: In addition to evaluating the accuracy of the 

equations derived here using the model forms already described, 

we also evaluated how accurately three previously published 

equations were able to predict the 127 mean values in our 

literature aggregated data set.  Per the forms of the three 

respective equations provided, literature values were predicted 

using the ACSM and Pandolf et al. equations on the basis of 

walking speed only.  For the HWS model, literature values were 

predicted using walking speed, estimated RMR, and the mean height 

of each population group.  The agreement between the actual 
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values across the three equations was evaluated using both the R
2

statistic and SEE. 

Aerobic Fitness Index Results: In addition, many of the subjects 

who were tested for the further development of our stature-based 

model of walking energy expenditure have also completed maximal 

metabolic rate tests.  Per our previous report regarding these 

data, we have further developed the two-step algorithm to 

estimate maximal aerobic power from submaximal heart rates.  As 

per our last reports, our current algorithms predict maximal 

aerobic power with an average accuracy between 8.0 and 10.0% for 

fully independent predictions on the 51 individuals currently 

included in the analysis (VO2max range = 19 to 75 mls•kg
-1
•min

-1
).

 Our average absolute error for these predictions currently 

stands 4.39 mls•kg
-1
•min

-1
, and our working SEE is 5.62 mls•kg

-

1
•min

-1
.  We have note re-optimized to incorporate the subjects

who were tested most recently. 

Figure 6.  Measured rates of maximal oxygen uptake (VO2max, Y-axis) vs. the measured oxygen pulse (O2 
per heartbeat at VO2max) appear in the uppermost panel.  The lower panel also illustrates the same 
measured maximal oxygen uptake (VO2max, Y-axis) vs. the estimated oxygen pulse during submaximal 
treadmill walking.  The submaximal oxygen pulse relationship provides the basis for our walking test of 
aerobic fitness. 
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KEY RESEARCH ACCOMPLISHMENTS: 

1) Considerable advancement in the understanding of walking 
metabolism has been realized through testing of our walking 

metabolism model (also called the Height-Weight-Speed 

model). 

 

2) Successful level over-ground tests of the walking model have 
been completed on two different terrain types: pavement and 

dry grass. 

 

3) Tests of resting, walking and maximal aerobic metabolism 
have been completed on a relatively large cohort of 

subjects. 

 

4) The Height-Weight-Speed model has been published after 
completion of a rigorous cross-validation procedure. 

 

5) A one-of-a-kind literature data base on human walking 
metabolism that includes over-ground and treadmill walking 

has been compiled and used to advance the Height-Weight-

Speed model. 

 

6) A procedure and algorithms have been developed to predict 
maximal aerobic metabolism from measured, steady-state 

submaximal heart rates and estimated oxygen uptake and 

oxygen pulse. 

 

7) Two walking metabolism manuscripts have been published; one 
abstract has been published (Weyand et al, 2010; Weyand et 

al, 2013), and a third full manuscript (the literature 

validation of the Height-Weight-Speed model) will be 

submitted shortly. 

 

8) One physical performance manuscript, incorporating work from 
an earlier phase of the award has been published (Bundle & 

Weyand, 2012). 

  

9) An aerobic fitness index invention disclosure was submitted 
for internal consideration by SMU for a possible patent 

application (consideration is ongoing). 

 

10) Load carriage experiments and advances in our walking 

   metabolism model have led to a major award to investigate 

   and quantify the influence of load on locomotor metabolism 

   and running performance [W81XWH-12-2-0013, Locomotion with 

   loads: practical approaches to predicting performance 

   outcomes, $892,000]. 
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REPORTABLE OUTCOMES: 

 

Please see key research accomplishments above. 

 

Personnel receiving salary support from the project included: 

Peter Weyand, Laurence Ryan, Nicole Schultz, Lindsay Wohlers, 

Kenneth Clark. 

 

 

CONCLUSIONS: 

 

Our results have substantially advanced the basic understanding of 

walking metabolism with important basic and applied outcomes.  

Basic outcomes include an advanced understanding of the 

determinants of walking energy expenditure.  Applied benefits 

include, but are not limited to: the ability to predict walking 

metabolic rates on firm level surfaces from only height, weight and 

walking speed, whether via direct measurements or monitoring via 

personal sensors, and the ability to estimate aerobic fitness tests 

from measured heart rates and estimated rates of oxygen uptake and 

oxygen pulses are feasible.  
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Summary 

Sprinting performance is determined by the application of musculoskeletal forces that are rapidly compromised by 

rates of in vivo fatigue. 

Abstract 

Prevailing physiological paradigms explain both sprint and endurance exercise performance in terms of the 

availability of metabolic energy.  However, for all-out efforts ≤ 60 seconds the prevailing view is no longer viable. 

Contemporary evidence indicates that sprinting performance is determined by musculoskeletal force application, 

with a duration-dependency explained by the intrinsically rapid rates at which skeletal muscle fatigues in vivo. 

Keywords: Force application, skeletal muscle, in vivo fatigue, locomotion, biomechanics 
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Introduction: Time-Dependent Engines 

Imagine purchasing a new sports car and taking it to an empty highway for a performance test.  With nothing but 

open road ahead, you put the gas pedal all the way to the floor.  In a matter of seconds, the transmission shifts, the 

engine revs, and the vehicle accelerates to attain a maximum velocity of 200 kilometers per hour.  However, as you 

settle in at full throttle with the expectation of sustained speed, the engine suddenly begins to lose power.  The power 

losses are rapid at first, but become more gradual over time.  Eventually, your new engine steadies out with only 

enough power output to sustain a relatively slow velocity between 50 and 100 kilometers per hour. 

As odd as the preceding scenario seems in the context of a man-made engine, from a mechanical and 

temporal standpoint, this is precisely how the muscular engines of humans and other animals perform.  Even though 

natural and manufactured engines can be similar in relying on chemical energy to generate force and power, their 

performance-duration relationships are strikingly dissimilar.  Thus, we quite naturally expect automobile and other 

man-made engines to perform without fatiguing, but the biologically equivalent prospects of an elite human sprinter 

finishing a mile run in just over two minutes, or a cheetah galloping through 26 miles in less than half an hour, do not 

seem remotely possible.  Yet the respective top speeds of these two athletes, if sustained, would permit these 

performances. 

Rather, personal experience and observation lead us to expect rapid decrements in performance capabilities 

anytime the duration of a maximal physical effort becomes more prolonged.  The duration-dependency of 

performance that has been well-characterized for humans and other animals appears in general form in Figure 1.  As 

illustrated by the negative exponential nature of the relationship, the greatest decrements in performance occur across 

those efforts that span the briefest durations.  For example, the decrements that occur as effort durations extend from 

2 to 30 s are much larger than those that occur with duration increases from 30 to 60 s, and those that take place from 

60 to 120 s.  This pattern of exponential decrease continues until durations extend to between five and ten minutes 

where performance falls to the levels that can be well sustained by the body’s renewable, aerobic sources of energy 

(13).  Thereafter, performance decrements become relatively small, even as durations extend out to several hours. 

Here, we consider the mechanical and metabolic factors responsible for the duration-dependency of 

biological engines.  We start with the mechanics that directly determine performance during burst sprint activities of 

a few seconds or less, and then consider how these requirements change as sprint durations increase.  We also 
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evaluate the prevailing view that the duration-dependency universally observed for biological engines results from 

the availability of chemical energy to provide fuel to the active muscles.  Although this view has been largely 

unchallenged in the last half century, reconsideration is warranted given more extensive evidence now available. 

Our analysis draws largely on the all-out running speeds and cycling power outputs of humans because of 

the extent and quality of the data available, and because the mechanical and metabolic contrasts between these two 

exercises provide informative scientific insights.  Although we rely heavily on the experimental evidence from these 

two modes of human sprinting, we expect our conclusions to generalize to non-human species and any activity that 

engages a large fraction of the body’s musculature for basic biological reasons.  The structural and functional 

properties of the musculoskeletal system are largely invariant across species (11, 26) as are the pathways of chemical 

energy provision within skeletal muscle (15).  Our analysis will focus on all-out efforts in the non-sustainable range 

of durations of up to roughly five minutes, with a particular emphasis on those efforts lasting less than a single 

minute.  We have focused on the duration range in which performance decrements are greatest to provide the most 

rigorous evaluation of existing scientific ideas. 

The Mechanical Basis of Sprinting Performance: External Force Application 

In the simplest terms, performance can be analyzed considering either the input to, or the output from, the skeletal 

muscles that serve as biological engines: the input being the chemical energy that fuels muscular contraction and the 

output being the force or mechanical power that the contractions produce.  Generally, performance in both sprint and 

endurance events has been causally attributed to the chemical energy input while the musculoskeletal mechanics that 

determine bodily motion and performance have been regarded as a dependent entity (8, 9, 14, 16-18, 22, 27, 28).  

This conceptualization evolved from the original analysis put forth to explain the performance-duration relationships 

of human, canine and equine athletes by A.V. Hill early in the last century (10).  In nearly a century since Hill’s 

analysis, robust empirical support has emerged for the endurance, but not the sprint portion of the curve (24).  The 

considerable difference in experimental support is attributable, at least in part, to measurement capabilities.  The 

chemical energy available to the body from aerobic metabolism that fuels endurance efforts can be accurately 

quantified by measuring oxygen uptake at the mouth, but an equivalent technique for measuring the anaerobic 

chemical energy also released during sprint efforts does not presently exist.  Thus, two primary factors have 



34 

contributed to the original and ongoing acceptance of the view that sprint exercise performance is limited by the 

metabolic energy available: 1) how well metabolic models explain endurance performance (8, 13, 22), and 2) the 

absence of data to refute them. 

We have opted to deviate from the classical approach by focusing on the mechanical output of the 

musculoskeletal system that can be measured rather than the chemical energy input that cannot.  The understanding 

of the relationships between force, motion and performance provided by classical Newtonian mechanics support the 

viability of this approach.  From respective whole-body mechanical entities provided by the external forces applied, 

either running speed or cycling power output, simple, quantitative performance relationships have been put forth (5, 

34, 35): 

Spd =  • Lc • Freqstep (eq. 1) 

 P    =     Fp     • Lds • Freqds    (eq. 2) 

Where Spd and P represent running speed and cycling mechanical power output, Fg/FWb and Fp represent the external 

applied forces; for running the stance-averaged vertical ground force as a multiple of the body’s weight and for 

cycling the average down-stroke pedal force.  The length terms,  Lc and Lds, represent the forward distance through 

which the body travels while the foot is in contact with the ground during running and the distance through which the 

pedal force is applied during each cycling down-stroke (i.e. one-half of the pedal circumference).  Finally, the 

frequency terms, Freqstep and Freqds, are the inverse of the step time and down-stroke times, where the former is 

defined as the sum of one contact and one aerial period. 

These force-performance relationships have several features that should be noted.  The running equation 

does not include the horizontal component of the ground reaction force because these forces are relatively small and 

contribute limitedly to the magnitude of the total ground reaction force during constant-speed sprint running without 

wind resistance (34).  Our cycling equation does not include the condition-specific factors that introduce variability 

into the over-ground power-speed relationship.  Additionally, the forces determining performance are mass-specific 

for the exercise that is weight-bearing (eq. 1) and absolute for the exercise (eq. 2) that is not. 

The general relationship between the external forces the skeleton applies to the environment and the level of 

performance attained is illustrated in Figure 2A+D.  The forces appearing in the figure represent those typical of 



35 

athletic subjects tested in the two primary modes of sprinting examined here.  In both cases, the threshold separating 

sustainable and non-sustainable forces occurs at the minimum level of mechanical performance that can be supported 

by the maximum rates of aerobic metabolism.  Note that while the maximum rate of aerobic metabolism available to 

support external force application in these two exercises is virtually the same, (6, 33) the relative forces, timing of 

force application, corresponding rates of energy utilization, and the relative intensities attained are not (Fig. 2B, C, 

E, F).  During running, the aerobic power of well-trained subjects can typically sustain ground forces that are twice 

the body’s weight, and 75-85% of those applied during a top speed sprint.  In contrast, the pedal forces that can be 

sustained by the same level of aerobic power during cycling are only one-fourth of the body’s weight and only 25-

35% of those applied during a burst cycle sprint when peak power output is achieved. 

However, in both exercises, the force-performance relationships presented in Figure 2 are reasonably linear 

across the full range of endurance and sprint exercise intensities.  These close force-performance relationships result 

from limited variation in the length and frequency terms in our respective force-performance equations.  Specifically, 

running contact lengths are a narrow function of leg lengths and exhibit little variation as runners increase from their 

intermediate to top sprinting speeds (34, 35).  Cycling down-stroke lengths are mechanically fixed by crank 

dimensions that are largely standardized across different bikes and riders.  Similarly, the respective stride and pedal 

frequencies that maximize burst sprint performances exhibit modest variation between individuals during running 

(35), and almost no variation during cycling (19).  Thus, for both exercises, differences in sprinting performance are 

predominantly a function of the magnitude of the external forces applied because length and frequency variation is 

limited. 

In addition to the deterministic relationship between external force application and performance, external 

forces also appear to be reasonably representative of the extensor muscle forces required.  The data currently 

available from techniques that estimate the minimum net extensor forces acting across the joints of the limb suggest 

that the relationship between the external forces applied and the net muscle forces generated across the joints most 

relevant for performance is relatively constant.  During running, the ankle and knee extensors generate forces that are 

roughly two to three times greater than the ground forces applied (3).  During cycling, the knee and hip extensor 

forces are roughly three times greater than the pedal forces applied (3, 12).  Accordingly, within each mode, the 
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external forces applied during sprinting appear to be consistently related to the corresponding muscle forces 

regardless of the intensity or duration of the effort. 

Neural Control and Maintenance of Force Application 

The recognition that sprinting performance and its duration-dependency are directly set by the external forces 

applied to the environment begs two questions of immediate relevance.  First, what determines the maximum 

external forces that the musculoskeletal system can apply during brief, all-out burst-style sprints?  And, second, why 

do the external forces applied become progressively smaller as the duration of sprinting increases, even though the 

effort being put forth is maximal?  In the first case, an understanding of the factors determining the maximal dynamic 

limb extensor forces that can be applied, particularly during sprint running, remains to be established (34).  In the 

second case, insight into the mechanisms of force impairment can be gleaned from the patterns of neuromuscular 

activation observed during all-out sprint trials. 

Selecting and maintaining the external forces needed for a sprint trial of any given intensity requires a fairly 

precise mechanism for controlling muscle force generation.  Force outputs are regulated primarily by the number of 

motor units and therefore muscle fibers activated, and secondarily by frequency modulation within the activated units 

(4, 29).  Experimentally, the levels of neuromuscular activation resulting from both neural control mechanisms can 

be assessed by surface electromyography (EMG) to measure the electrical activity resulting from membrane 

depolarization of the activated muscle fibers.  For both static and dynamic contractions requiring similar limb 

positioning and relative shortening velocities, external force application is directly related to the rectified and 

integrated EMG signal (4).  As can be seen in Figure 3A, for the vastus lateralis muscle that extends the knee, the 

EMG-external force relationship is linear over a 6-fold range of pedal forces from 100 to 600 N at a pedal cadence 

of 100 rpm when fatigue is not present. 

With this relationship in place, we next considered the neuromuscular activity-external force relationship 

across the full time course of all-out sprint trials of different intensities.  For both the sprint cycling and running, 

trials to failure were administered at constant intensities to hold the external and joint extensor forces required 

relatively constant.  Three sprint cycling trials (Fig. 3B) were administered with pedal forces exceeding 300 N, and 

therefore in the non-sustainable force range for this individual, with the fourth being administered at a sustainable 
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force level of 100 N.  The sprint running trial in Figure 4 was administered at a non-sustainable treadmill running 

speed of 7.3 m/s.  For all three of the sprint cycling trials in Figure 3B, the EMG activity of the vastus lateralis 

muscle increased continuously to maintain the constant pedal forces the trial required.  Similarly, during the sprint 

running trial, the EMG activity of the extensor muscles monitored increased continuously throughout the 47 s trial 

illustrated while the ground forces remained relatively constant (Fig. 3C+D).  In contrast, in the non-sprint cycling 

trial that required relatively low, sustainable pedal forces, the EMG activity remained essentially constant over the 

course of the trial. 

The EMG data provide several conclusions regarding the maintenance of the external forces applied during 

all-out sprinting.  First, for all the sprint cycling and running trials examined, the levels of neuromuscular activation 

needed to maintain a constant external force increased continuously from the outset to the conclusion of the trial.  

Second, the rates of increase in the compensatory neuromuscular activity observed were typically more rapid for the 

briefest trials requiring the greatest forces.  Third, no increases in neuromuscular activity were observed when the 

force required was sufficiently small to be supported by aerobic metabolism.  And, fourth, the levels of 

neuromuscular activation at the point of trial and force failure were lower for the longer duration sprint trials that 

required lesser forces. 

These relatively simple neuromuscular experiments indicate that all-out sprinting performances are highly 

duration-dependent because of the rapidity of musculoskeletal fatigue in vivo during dynamic exercise requiring 

large force outputs.  The timing and intensity-dependent nature of the force impairment observed complements the 

functional understanding of muscle force production at both the systemic and cellular levels.  In the former case, 

fatigue as indicated by compensatory neuromuscular activity occurs more rapidly in those sprints that require greater 

external forces which activate and rely on faster, more fatigable muscle fibers (1, 4, 29).  In the latter case, the 

virtually instantaneous, and intensity-dependent nature of the fatigue observed is consistent with a cellular level 

force-impairment mechanism that is believed to be brought about by the metabolic by-products of the cross-bridge 

cycle itself (1).  Additionally, the lower iEMG values generally observed at the failure point for longer vs. shorter 

trials raises the possibility that maximum levels of neuromuscular activation may be systematically reduced as the 

duration of all-out sprint trials is increased. 
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With a mechanistic explanation for the progressive impairment of musculoskeletal forces identified, we next 

investigate whether the duration-dependency of sprinting performance might somehow be linked to the mechanics of 

external force application. 

From Performance Variability to a Force Model for Sprinting 

From the outset of our own experimental efforts, we employed a design strategy of altering three independent 

variables in order to maximize the sprint performance variation observed.  First, we recruited individuals with large 

differences in their sprint performance capabilities (5, 30, 35).  Second, we administered all-out sprint trials across a 

broad range of durations from 2 to 300 seconds over which we knew a priori that performance levels would vary 

considerably (5, 6, 30, 33).  Third, we compared performances across different modes of sprint locomotion (33).  A 

representative sample of the performance variability observed is illustrated for two runners and two cyclists each in 

Figure 4A. 

Our initial objective was to standardize the variation attributable to the first of our independent variables: 

individual performance differences.  After compiling a sizeable data set for sprint running, we found that individual 

differences could be standardized using a simple, two-step process (6, 30, 33).  Step one is quantifying the upper and 

lower intensity limits that bracket the range of sprinting performances for each individual: 1) the maximum burst 

sprint of 2 seconds or less (Spdburst for running; Pburst for cycling) and 2) the minimum intensity that elicits the 

maximum rate of aerobic metabolism (Spdaer for running; Paer for cycling) .  The difference between these upper and 

lower limits represents the full range of non-aerobic and therefore non-sustainable speeds (Spdburst – Spdaer) or power 

outputs (Pburst – Paer) possible for sprint efforts.  Step two is standardizing sprinting speeds or power outputs by 

expressing the performance achieved as a fraction of the individual’s non-sustainable speed or power reserve (for 

example, Spdburst= 1.0, Spdaer= 0.0, etc.; see Fig. 4B). 

In comparative terms, the fraction of an individual’s non-sustainable speed or power is the sprinting 

equivalent of expressing endurance exercise intensities as a fraction of an individual’s maximum aerobic power, or 

2max.  Because endurance efforts rely predominantly on aerobic or sustainable sources of metabolic power, 

relative intensities need only be referenced to one variable: the minimum intensity eliciting the maximum aerobic 
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power of the performer (6, 30).  In contrast, sprinting efforts rely on both sustainable and non-sustainable sources of 

metabolic power, and therefore need to be referenced to two variables: both the burst and aerobic maximum of the 

performer.  Here, our primary impetus for developing an index of relative sprint exercise intensities was the potential 

for predicting all-out sprint trial durations. 

Our expression of relative sprinting intensities did, in fact, lead us to a direct means by which to quantify 

the variability introduced from our second independent variable: sprint trial duration.  This is illustrated by the first 

two panels appearing in Figure 4.  When the absolute sprinting performances in Figure 4A were expressed as 

fractions of the non-sustainable speed or power of the individual performers, their relative sprinting intensities fell in 

essentially the same duration-dependent manner within the respective modes (Fig. 4B).  Thus, the relationship 

between trial duration and relative sprinting intensity can be described using single, mode-specific exponents (krun 

or kcycle) that provide the respective curves: 

Running:  Spdf-NS (t) =  (eq. 3) 

Cycling: Pf-NS (t) =  (eq. 4) 

Where Spdf-NS (t) and Pf-NS (t), respectively, represent the fraction of the non-sustainable speed and power that can be 

maintained for an all-out sprint trial of duration t, e is the base of the natural logarithm, and krun and kcycle are the 

exponents that describe the duration-dependent decrements in relative sprinting intensities within each mode of 

exercise.  Validations of our model using hundreds of running trials administered to both sprint and endurance 

athletes, over a broad range of durations, and in both field and laboratory settings, have predicted the performances 

observed to within 2-4% on average (6, 30). 

The performance variability introduced by the third variable, mode of exercise, was perhaps the most 

difficult to quantify as there is no standardized approach for equating absolute running speeds and cycling power 

outputs.  Moreover, even after standardization of the different absolute speed and power output values to relative 

sprint intensities, large between-mode differences in the relative intensity-duration relationship were present (Fig. 

4B).  Relative sprint cycling performances fell more sharply in relation to trial duration than relative sprint running 
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performances did, as reflected in the two-fold difference in exponential values (33) providing the best empirical fits 

to the respective data (krun = 0.013 s-1; kcycle = 0.026 s-1).

We attribute this two-fold, between-mode difference to a corresponding difference in the fractional duration 

of external force application in the different modes of sprint exercise.  Each pedal revolution involves consecutive 

periods of limb-pedal force application by the right and left legs that occur in virtually immediate succession.  In 

contrast, consecutive periods of limb-ground force application during each running stride are separated by aerial 

periods of equivalent duration during which no ground force is applied (Fig. 2B+E).  Accordingly, the fraction of the 

total sprint time that involves external force application by a single limb to the pedal or ground, i.e. the duty factor 

(DF), is two times greater for cycling than sprint running (DFrun = 0.24, DFcycle = 0.50).  When duration-dependent 

decrements in relative sprint cycling and running performance are expressed in terms of the time of external force 

application only (trial time • DF), rather than the total sprinting time, decrements in the two modes conform to a 

common relationship (Fig. 4C). 

This third model element quantitatively links the duration dependency of performance expressed in eqs 3 

and 4, to the mechanics of external force application introduced originally in eqs 1 and 2.  Given the limited 

variation of the length and frequency terms in eqs 1 and 2 previously noted, the performance-duration relationship 

predominantly reflects a duration-dependency in the maximal forces the musculoskeletal system can produce and 

apply externally (33).  The existence of an apparently common relationship between relative sprinting intensities and 

the duration of external force application across two mechanically distinct modes of sprint exercise has several basic 

implications.  First, at the whole-body level, that fraction of the sprint running speed or cycling power output 

provided by non-sustainable, anaerobic sources of chemical energy has a discrete duration dependency dictated by 

the cumulative duration of external force application.  Second, the duration-dependency observed results from a 

rapid, progressive impairment of muscular force resulting from a reliance on anaerobic sources of chemical energy to 

fuel the contractions dictated by the mechanics the exercise requires.  This demand-driven, fatigue-based explanation 

is fully consistent with numerous observations: the virtually immediate and progressive fatigue evidenced in our 

EMG data (5), rates of fatigue that are intensity dependent, the more rapid time course of fatigue in cycle vs. run 

trials of similar duration (Fig. 4B), and muscle force impairment at the cellular level resulting from the metabolic by-
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products of a reliance on anaerobic metabolism to fuel the contractile activity supporting external force application 

(1, 5, 33). 

Although aspects of our sprinting performance model remain a work in progress, our design strategies and 

force application framework have provided empirical, predictive and testable outcomes that have not come forth 

from the energy supply limit models.  These include: quantification of relative sprinting intensities, identification of a 

common duration-dependency of relative sprinting performances, linking the duration-dependency of performance to 

external force application, and the identification of a force-impairment explanation for the duration-dependency of 

sprinting performance that can be tested at the tissue and cellular levels. 

Metabolic Energy Release during Sprinting: Driven by Demand or Limited by Supply? 

The tradition of conceptualizing all-out locomotor performance as a metabolic energy input, and therefore supply-

limited endeavor originated nearly a century ago with the work of independent, contemporary scholars, A.V. Hill 

(10, 11) and Rodolfo Margaria (16-18).  Hill related approximations of the metabolic energy available to record 

performance data from a variety of species and modes of human locomotion.  Margaria and colleagues attempted to 

quantify the maximum rates of chemical energy release during all-out runs of different durations via direct 

experimentation.  While both investigators provided the foundations for energy supply-limit modeling that continues 

to this day (Hill: 13, 14, 22, 27, 28; Margaria: 8, 9, 23), they reached opposite conclusions regarding sprint 

performance limitations.  Margaria was sufficiently convinced of an energy supply limit, even for burst-type sprints 

as short as 2-3 seconds that he introduced the term “anaerobic muscular power” to describe them (16, 17).  He 

further proposed that sprint performances measured in mechanical units should be expressed in metabolic terms (17). 

 In contrast, in his original 1925 work on performance limits, Hill stated: “It is obvious that we cannot pursue our 

(metabolic energy supply) argument to times below about 50 seconds”, as these performances are limited by factors 

“mechanical and nervous” (10).  Nonetheless, nearly a century after Hill published his conclusion, the supply-limit 

models he inspired continue to be applied (14, 22, 27, 28) to the very sprint performances that he recognized they 

could not explain. 

The numerous energy supply-limit models that have come forth since Hill and Margaria differ in their 

specific features, but share a common characteristic: none has been empirically validated because the data required 
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to do so are not available.  In the continued absence of valid whole-body anaerobic energy release measurements, 

these models have been formulated with largely uncertain and widely varying assumptions (2) regarding: the 

quantities of the anaerobic and aerobic energy available, their respective release rates, and the efficiency with which 

chemical energy is converted into speed, power, and force.  Thus, the close fits that these models can provide to 

performance data are achieved by incorporating assumptions that have unknown or poor (28) validity as aptly noted 

(2, 27).  Critical consideration of the explanations these models offer for sprinting performance is overdue, 

particularly given the performance-duration patterns that are now available for well-controlled sprint trials of very 

brief durations. 

In their original view of burst and brief sprint exercise performance, Margaria and colleagues estimated that 

chemical energy re-supply to the contractile machinery could operate at maximal power for durations of 5-6 seconds 

(16, 17).  Hence, these investigators also believed that maximal sprinting intensities could be maintained for 

durations of 5-6 s before further increments in duration and slowing rates of energy re-supply would compromise 

performance.  Yet, the data now available demonstrate that performance decrements begin to follow a negative 

exponential pattern that occurs either instantaneously at the outset of exercise or within the first 2-3 s (5, 6, 33).  

Thus, in contrast to the “anaerobic” muscular power limitation proposed by Margaria, the greatest decrements in 

sprinting performance occur precisely over those very brief durations during which: 1) the rates of anaerobic energy 

re-supply to the contractile machinery are most rapid, and 2) intracellular stores of chemical energy are greatest. 

A second difficulty with the energy supply limit models is mechanistic inconsistency with energetic 

measurements at the cellular level.  One of the most widely noted features of muscle cell metabolism is the relative 

constancy of intracellular concentrations of the ATP molecule that serves as the immediate source of chemical 

energy to the contractile proteins.  This well-regulated maintenance, even during the most intense contractile periods, 

is attributable to the rapid, one-step creatine phosphokinase reaction that re-supplies ATP.  Accordingly, this near-

equilibrium reaction is widely regarded as a temporal buffer that safeguards intracellular energy stores (15).  Indeed, 

measurements made possible within living skeletal muscle by NMR spin technology indicate that the 

phosphocreatine reaction is capable of re-synthesizing ATP several times more rapidly than the contractile proteins 

within the muscle cells can use it (21).  Thus, the rate-limiting step in the release of chemical energy at the cellular 
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level has been conclusively shown to be the contractile event that uses the energy and not the metabolic pathways 

that re-supply it. 

Beyond the mechanistic inability to explain whole-body performance patterns and cellular-level energetic 

data during intense periods of contractile activity, energy supply-limit models also imply or predict that: 1) sprinting 

performance should be impaired when the total metabolic power available is reduced, and 2) sprinting performance 

should be largely unaffected by interventions that alter the mechanics of sprint exercise.  Neither expectation has 

been borne out by the whole-body data that are now available.  In the first case, hypoxic conditions have been used 

to reduce the availability of metabolic energy from aerobic metabolism during brief, all-out sprint efforts.  In our 

running experiments (32), we found little difference between normoxic and hypoxic sprint performances lasting 60 s 

or less, despite aerobic contributions that were reduced by as much as 25% in the hypoxic condition.  In the second 

case, mechanical interventions that prolong the lengths of external force application in accordance with our original, 

force-performance equations (eqs. 1 and 2) have consistently enhanced sprinting performance.  These include: 

elliptical pedal orbits that increase single-leg cycling power outputs (20) by prolonging the down-stroke portion of 

the pedal stroke (eq. 2), artificially compliant, lightweight, double-lower limb prostheses that enhance running 

speeds (31) by prolonging contact lengths, reducing limb repositioning times and elevating stride frequencies (eq. 1), 

and hinged-blade ice skates that increase speed by prolonging the duration of the push-off portion of the skating 

stance phase (7). 

Perhaps the most compelling evidence that energy release is demand-driven in accordance with mechanical 

requirements of sprint exercise rather than rate-limited by the supply of metabolic energy comes from our run-cycle 

comparisons (33).  Specifically, if energy release during sprinting is in fact demand-driven, the absolute sprinting 

intensities and rates of energy release should both be greater in the mode of exercise during which force application 

and the supporting muscular contractions are relatively longer.  Our run-cycle comparison is simplified by mechanics 

that involve largely the same limb extensor muscles for force application, and the similar maximal aerobic powers of 

the subjects tested in the respective modes (6, 33).  When sprint cycling and running intensities are expressed as 

multiples of the respective aerobic maximums, the relative performances achieved are more than 50% greater during 

very brief cycling vs. running bouts (3.1X vs. 1.8X).  When rough approximations of peak rates of metabolic energy 

release were made by extrapolating the linear metabolic rate-running speed, and metabolic rate-power output 
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relationships, that are measurable below 2max to the intensities attained during sprinting, these estimates, like the 

factorial sprinting intensities achieved, were 1.5 times greater during very brief sprint cycling vs. running (Fig. 

2C+F).  Both results are consistent with energy release being driven by the mechanical demands of sprint exercise.  

Neither is consistent with the traditional view of a single whole-body limit on maximal anaerobic power that 

generalizes across modes of exercise (16-18). 

Conclusions: Does Metabolic Power Matter for Sprinting? 

The conclusion that sprinting is not energy supply-limited as traditionally conceived (8, 9, 14, 16-18, 22, 23, 27, 28) 

prompts the general question of the functional role metabolism does play and the specific question posed in our title: 

does metabolic power matter for sprinting performance?  For burst-type sprints that last only a few seconds, a wealth 

of data spanning multiple levels of biological organization are fully consistent in indicating that the availability of 

metabolic power neither determines nor directly limits performance.  These burst sprints predominantly reflect 

musculoskeletal function and not the “anaerobic muscular power” of Margaria (16, 17) or the many anaerobic fitness 

parameters that evolved subsequently.  Nonetheless, metabolic power does assume progressively greater functional 

relevance as the duration of all-out sprinting extends from a few seconds to a few minutes, but in this case also, not 

in keeping with the traditional conceptualization.  The predictive success of our force application model, both within 

and across modes, indicates that as efforts extend from a few seconds to a few minutes, the fractional reliance on 

anaerobic metabolism progressively impairs whole-body musculoskeletal performance, and does so with a rapid and 

remarkably consistent time course.  In this respect, the sprint portion of the performance-duration curve 

predominantly represents, not a limit on the rates of energy re-supply, but the progressive impairment of skeletal 

muscle force production that results from a reliance on anaerobic metabolism to fuel intense, sequential contractions 

(Fig. 1). 

Thus, the duration-dependence of the performances of elite human sprinters, cheetahs and other vertebrate 

animals that rely on skeletal muscle is attributable to the provision of chemical energy from both sustainable and 

non-sustainable sources in their natural engines.  In contrast to synthetic engines that can convert chemical energy 

into force and mechanical power with relatively constant efficiency and without fatiguing, skeletal muscle has an 
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intrinsic duration-dependence directly linked to that proportion of the muscular force derived from the non-

sustainable, anaerobic sources.  From a design standpoint, these non-sustainable energy sources markedly enhance 

the range of musculoskeletal performances possible, but do so only transiently because the additional mechanical 

function provided is so rapidly compromised. 

In closing, we offer three basic conclusions regarding sprint exercise performance and a biological contrast 

they reveal.  First, the view that brief, all-out exercise performance is directly limited by rates of chemical energy 

provision to the contractile machinery in skeletal muscle is no longer supportable.  Second, the metabolic energy 

released during sprinting is demand-driven and not supply-limited.  Third, sprint exercise performance is determined 

by the application of musculoskeletal forces with a duration-dependency dictated by how rapidly these forces are 

compromised by rates of fatigue in vivo. 

Finally, we note that the relationship between exercise mechanics, metabolism and performance differs 

fundamentally between sprint and endurance exercise.  Although a common relationship has traditionally been 

assumed to generalize across a broad duration continuum of sprint and endurance efforts, contemporary evidence 

indicates otherwise.  For endurance events, the metabolic energy available via sustainable, aerobic sources of 

metabolism predominantly determines performance by setting the intensity of the musculoskeletal mechanics that can 

be sustained throughout the effort.  For sprint efforts, precisely the opposite is true: the intensity of the mechanical 

activity that the musculoskeletal system can transiently achieve determines the quantities of metabolic energy 

released and the level of performance attained.
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Figure Captions 

Figure 1. A schematic representation of the non-sustainable force application model of sprinting performance. The 

horizontal lines identify the upper (dashed, mechanical) and lower (solid, aerobic) bounds of the range of sprinting, 

or non-sustainable performances for whole-body sprint exercise. Performance (e.g. running speed or cycling power 

output) levels fall in a characteristic fashion as the duration of the sprint event becomes more prolonged. 

Figure 2. The direct relationship typically observed between the external force applied and level of performance 

attained for cycling (A; data from 33) and running (D; data from 6, 35). Consecutive periods of force application by 

opposite limbs occur in immediate succession during cycling (B; adapted from Seargent et al. ref. 25) but are 

separated by aerial periods without force application during running (E; data from 34). Hypothesized rates of 

chemical energy utilization by the contractile elements of the extensor muscles activated during sprint cycling (C) 

and running (F) are schematically presented as square waves for simplicity. [Notes: The horizontal bars above the 

force waveforms in B and E identify the durations of pedal revolutions or stride times and the periods of external 

force application.] The ground and pedal forces illustrated correspond to the Fg and Fds  terms in equations 1 and 2, 

respectively. 

Figure 3. Representative data from numerous cycling trials (A, B) and a single sprint running trial (C, D). Integrated 

EMG data from the muscle contractions occurring in the non-fatigued state at the outset of each cycling trial are 

directly related to the pedal forces applied (A). Ground (C) and pedal forces (not shown) did not vary over the 

course of individual sprint running and cycling trials. In contrast, the EMG activity of the limb extensor muscles 

activated to support external force application increased continuously throughout each sprint trial (B, D) to maintain 

the constant force required.  Data acquired as in reference #5 and 34. 

Figure 4. Decrements in all-out cycling power output and running speed for two individual subjects (A), during 

cycling (33) and running (6). When the individual sprint performances in A were expressed as relative sprinting 

intensities (i.e. fraction of the subject’s non-sustainable speed or power reserve), duration-dependent decrements in 



50 

cycling performance were twice as large for cycling vs. running (B). When the same relative sprint cycling and 

running performances are expressed in terms of the time of external force application only (trial time • duty factor; 

DFrun = 0.24, DFcycle = 0.50), rather than the total sprinting time, as in B, the duration-dependency of relative 

sprinting performance in the two modes of exercise becomes essentially identical (C).
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SUMMARY 

The metabolic and mechanical requirements of walking are considered to be of fundamental importance to the 

health, physiological function and even the evolution of modern humans.  Although walking energy expenditure and 

gait mechanics are clearly linked, a direct quantitative relationship has not emerged in more than a full century of 

formal investigation.  Here, on the basis of previous observations that children and smaller adult walkers expend 

more energy on a per kg basis than larger ones do, and the theory of dynamic similarity, we hypothesized that body 

length (or stature, Lb) explains the apparent body size-dependency of human walking economy.  We measured 

metabolic rates and gait mechanics at six speeds from 0.4 to 1.9 m•s
-1 in 48 human subjects who varied by a factor of 

one and one-half in stature, and approximately six in both age and body mass.  In accordance with theoretical 

expectation, we found the most economical walking speeds measured (J•kg
-1

•m
-1) to be dynamically equivalent (i.e. 

similar U; where U = velocity2
/gravity •Lleg) among smaller and larger individuals.  At these speeds, stride lengths

were directly proportional to stature while the metabolic cost per stride was largely invariant (2.74 ± 0.12 J• kg
-

1
•stride-1).  The tight coupling of stature, gait mechanics and metabolic energy expenditure resulted in an inverse

relationship between stature and mass-specific transport costs (J •kg
-1

•m
-1; Etrans/Mb  Lb

-0.95).  We conclude that

humans spanning a broad range of ages, statures and masses incur the same mass-specific metabolic cost to walk a 

horizontal distance equal to their stature.  
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INTRODUCTION 

The metabolic and mechanical requirements of human walking influence a broad array of structural, functional and 

health relationships.  This global functional importance has stimulated a body of scientific literature that now spans 

more than a century and encompasses a variety of experimental objectives.  These range from basic biological 

inquiry to applied efforts to predict speed, energy expenditure and other variables in laboratory and field settings.  

However, in spite of the extensive scientific consideration human walking has received, some aspects of basic 

understanding remain limited. 

A primary example of incomplete contemporary understanding is the body size dependency long observed 

for the metabolic requirements of this gait.  As would be expected, larger individuals do expend more energy than 

smaller ones when the metabolic energy expended is expressed in absolute terms.  However, the differences 

observed are not directly proportional to body mass.  When expressed on a per kg basis, the energy expended to 

walk a fixed distance or at a given speed can be as much as two to three times greater for smaller vs. larger 

individuals.  At present, a quantitative explanation for the relationship between body size and the energy cost of 

human walking has not been established. 

The greater mass-specific metabolic rates consistently observed for smaller vs. larger human walkers have 

been considered from several perspectives.  Ontogenetic approaches have appropriately considered both maturation 

(DeJaeger et al., 2001; Morgan et al., 2002) and body size (McCann and Adams, 2002), but have not resolved their 

quantitative importance.  Mechanical approaches have estimated that the mass-specific mechanical work that small 

children and adults perform during walking differs only marginally (Cavagna et al., 1983; Bastien et al., 2003; 

Schepens et al., 2004), and therefore cannot account (Schepens et al., 2004) for the much larger differences observed 

in metabolic cost.  The current lack of quantitative understanding is reflected in the use of different generalized 

equations to estimate the energy expended by adult (ACSM, 2006; Pandolf et al., 1971) and child populations 

(Morgan et al., 2002).  In both cases, population-specific equations predict the same mass-specific metabolic rates 

for individuals who differ in height and weight. 

A potential explanation for the apparent body-size dependency of the metabolic cost of human walking is a 

corresponding rate dependency in executing the mechanics of each walking stride (Alexander, 1976; Heglund and 

Taylor, 1988).  Clearly, the shorter statures of smaller vs. larger walkers require more, and more frequent, strides in 

order to travel any fixed distance, or at any given speed.  If the mechanical components of each walking stride were 

to require the same expenditure of metabolic energy per kilogram of body mass, shorter walkers might have greater 

mass-specific metabolic rates simply because they take more frequent strides.  This possibility seems most plausible 

if shorter and taller individuals were to walk in dynamically similar ways, i.e. with both stride lengths and times 

related to the body’s length (Lb) by some constant proportion.   Although widely embraced (DeJaeger et al., 2001; 

McCann and Adams, 2002; Cavagna et al., 1983), the validity of the dynamic similarity assumption is not strictly 

known.  Thus, the simple possibility that the energy cost per stride at equivalent speeds may be the same for short 

and tall individuals has not been evaluated.  
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Here, we tested the idea that the mass-specific energy cost of human walking is determined by stature.  Our 

expectations of approximate geometric similarity in bodily proportions and dynamic similarity in gait among shorter 

and taller individuals led us to evaluate this idea in two ways.  First, we hypothesized that the mass-specific 

metabolic energy expended per stride would not vary between short and tall individuals.  Second, we hypothesized 

that mass-specific energy expended per unit distance walked would be inversely related to stature ( Lb
-1.0).  Both

hypotheses were tested at equivalent walking speeds. 

MATERIALS AND METHODS 

Experimental design 

We employed several design strategies to maximize the rigor of the two tests of our stature hypothesis.  First, we 

recruited subjects who spanned relatively broad ranges of age, stature, and body mass.  Second, we divided the 48 

subjects recruited into four discrete groups on the basis of stature to minimize the influence of individual variability 

in walking economy that is not related to stature on our analyses.  Third, we significantly increased the robustness of 

our scaling analysis by using the published literature to expand the number of stature groups included from our 

original four groups to a total of 29.  Fourth, we took considerable care to address two issues that could potentially 

confound both hypothesis tests: 1) making metabolic comparisons only at those walking speeds that are equivalent 

for subjects of different statures, and 2) correctly partitioning basal vs. walking metabolism.   

Equivalent Walking Speeds: Because walking transport costs vary with speed and do so in a stature-

dependent fashion (DeJaeger et al., 2001; McCann and Adams, 2002), identifying equivalently economical speeds 

for individuals of different body sizes was a critical prerequisite for valid analysis.  Intuition and previous results 

(DeJaeger et al., 2001; McCann and Adams, 2002; Alexander, 1976) both indicated that any given absolute speed 

would be relatively slower for shorter individuals and relatively faster for taller ones.  Accordingly, the speeds of our 

subjects were not likely to be either equivalent (Alexander, 1976), or equivalently economical (Heglund & Taylor, 

1988) at any given absolute speed.  We adopted an empirical solution to this challenge, identifying equivalent speeds 

for shorter and taller individuals as that speed at which a minimum transport cost (Etrans-min, J•kg
-1

•m
-1) was measured

for each.  These empirically determined minimums were subsequently used to compare the energy cost per walking 

stride and to identify the exponential relationship of best-fit between metabolic transport costs and stature.  

Given the critical importance of making stature-based comparisons at walking speeds that are equivalent, 

and equivalently economical, for smaller and larger individuals, we adopted two post-hoc criteria to evaluate whether 

the most economical walking speeds were mechanically equivalent: the duty factor, or ratio of foot-ground contact 

time to total stride time (tc/tstr) and the Froude number derived from the principle of dynamic similarity (i.e. similar 

U; where U= velocity2/gravity •Lleg).  In the event that the most economical speeds measured for the different stature

groups were not equivalent, these two well-established mechanical indices would quantify the lack of equivalence 

present.  Alternatively, the equivalence expected would result in the most economical speeds observed increasing as 
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a predictable function of body length (speed at Etrans-min  Lb
0.50), but occurring at the same duty factor and Froude

number in all four stature groups. 

Basal vs. Walking Metabolism: Correctly quantifying the metabolic energy incurred by walking necessitated 

subtracting out that portion of the body’s total metabolic rate devoted to non-walking, or basal metabolism.  

Although some investigators have subtracted the metabolic rate measured during quiet standing for this purpose, we 

subtracted basal, rather than standing metabolic rates.  We did so because standing rates include muscular support 

costs (Joseph and Nightingale, 1952; Loram et al., 2007; Weyand et al, 2009) that are also incurred during walking 

(Biewener et al., 2004; DeJaeger et al., 2001; Grabowski et al, 2005; Griffin et al, 2003; McCann and Adams, 2002; 

Weyand et al, 2009).  The basal rates subtracted from both our original data and qualifying literature data were 

calculated from the age, gender, mass and stature of each subject using the generalized equations of Schofield et al., 

(Schofield et al., 1985).  Using estimates, rather than direct measures, was necessary in order to: 1) include the 25 

qualifying group means from the literature in our scaling analysis, and 2) to treat both original and literature data 

points in the same quantitative manner.  Directly measuring the basal metabolic rates of the subjects in the qualifying 

literature populations was clearly not possible.  Accordingly, to also evaluate the predictive accuracy of the 

Schofield et al., equation estimates, we measured post-absorptive resting metabolic rates in six adult subjects who 

were available for testing, three male and three female. 

The error introduced into our analyses of group data as a result of necessarily using estimated rather than 

measured basal metabolic rates was considered using both original measures and previously reported results.  The 

Schofield et al., age, height, weight and gender equations have been extensively validated and are the most 

extensively used for this purpose.  The error that results from using these equations to predict the mean basal 

metabolic rates of either children or adult groups was established in the original work as ± 2.2-3.4% for groups of ten 

subjects (Schofield et al., 1985).  Similar accuracy for predicting group means has been subsequently reported by a 

number of other investigators (De Loreonzo et al., 2001; Piers et al., 1997; Johnstone et al., 2006; Rodriguez et al., 

2000; van der Ploeg et al., 2001). 

Subjects 

Forty-eight healthy individuals, 24 males and 24 females, between the ages of five and 32 years of age were included 

in the study.  The 32 subjects who were 18 years of age or younger were tested at the Children’s Nutrition Research 

Center of the Baylor College of Medicine while the 16 subjects who were over the age of 18 were tested at the 

Locomotion Laboratory of Rice University.  Written informed assent and consent was obtained in accordance with 

the Institutional Review Boards of Baylor College of Medicine and Rice University.  For the purpose of analysis and 

without regard to age, subjects were divided into four groups of the basis of stature (A, B, C, D).  The age, gender, 

body mass (Mb), stature (Lb) and leg length (Lleg) means of the four stature groups appear in Table 1. 

Treadmill Testing Protocol 
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Walking trials were administered on a level treadmill at constant speeds of 0.4, 0.7, 1.0, 1.3, 1.6, and 1.9 m•s
-1.  The 

protocol began at 0.7 m•s
-1 and was administered continuously in a staggered speed fashion until all the speeds at 

which the subjects could maintain a walking gait were completed.  After a first completion of the protocol, subjects 

were allowed a five to 10-minute break before repeating each walking speed a second time.  The initial trial of each 

protocol lasted four to six minutes.  Subsequent trials lasted until a minimum two-minute, steady-state period with 

respect to the rate of oxygen uptake was observed in real time.  All the adult subjects tested walked steadily and 

provided reproducible rates of oxygen uptake at each speed.  Four of a total of thirty-six children tested did not 

maintain a consistent position on the treadmill and had rates of oxygen uptake that differed by more than 5% across 

the different trials completed at common speeds.  The data from these four children were not included in the analysis. 

All subjects were instructed to walk and not run during the testing.  The shortest subjects, those in group A, 

were able to walk at the four speeds through 1.3 m•s
-1 successfully, but could not attain speeds of 1.6 and 1.9 m•s

-1 

without running.  The subjects in group B were able to walk at the five speeds through 1.6 m•s
-1 successfully, but 

could not do so at 1.9 m•s
-1.  All but three of the subjects in group C, and all the subjects in group D were able to 

walk at all six speeds including 1.9 m•s
-1. 

Metabolic Measures 

Indirect calorimetry was used to determine rates of metabolic energy expenditure from measurements of expired 

gases during steady-state treadmill walking using a computerized metabolic system (Parvo Medics TrueOne 2400, 

Sandy, Utah) per our previous description (Weyand et al., 2006).  Expired gases were directed via a one-way 

breathing valve and corrugated tubing through a pneumotach into a mixing chamber.  Aliquots were drawn from the 

mixing chamber and analyzed for O2 and CO2 fractions using paramagnetic and infrared gas analyzers, respectively. 

Rates of oxygen uptake at each treadmill walking speed were averaged over a two-minute steady-state period to 

obtain values for each trial.  Measures from the two trials completed at each speed were averaged for subsequent 

analysis.  Mean rates of oxygen uptake were divided by body mass and converted to rates of energy expenditure 

(Emetab, W•kg
-1) using an energetic equivalent of 20.1 joules per ml of O2.  The same Parvo Medics TrueOne

metabolic system was used in both laboratory locations.  The system was calibrated using a three-liter syringe to 

introduce volume flow rates that spanned the range of ventilation rates present during testing. The O2 and CO2 

analyzers were calibrated using a two-point calibration procedure using room air and known concentrations in the 

physiological range for expired gases.  Validations of the TrueOne system were performed using precision blended 

N2-CO2 mixtures infused at rates to simulate rates of oxygen uptake ranging from 0.3 to 1.0 l•min-1 in accordance

with the technique described by Moon et al., (Moon et al., 1995).  The agreement between precision-simulated rates 

of oxygen uptake and those measured by the TrueOne metabolic system across 15 infusion trials spanning the 

aforementioned range was 2.8 ± 2.0%. 

Gross, mass-specific, metabolic rates (W•kg
-1) were converted to net, mass-specific metabolic rates (W•kg

-

1) by subtracting rates of basal metabolism in accordance with the original suggestion of Schmidt-Nielsen (Schmidt-

Nielsen, 1972).  The basal rates subtracted for individual subjects were estimated from the generalized equations of 
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Schofield et al., (Schofield et al., 1985) using age, height, weight and gender.  Resting metabolic rates were also 

measured in six adult subjects who lay quietly in a supine position for a minimum of 60 minutes after reporting to the 

laboratory in a post-absorptive state in the early morning.  Resting metabolic rate was determined from the lowest 

consecutive ten-minute average over the last 30 minutes of testing.  The mean value from this group of six subjects 

was compared to that predicted by Schofield et al., to directly assess the predictive accuracy of the Schofield 

equations on a portion of our original data. 

Metabolic or walking transport costs, i.e. the mass-specific, metabolic energy expended to walk a unit 

distance (Etrans, J•kg
-1

•m
-1) were determined by dividing net, mass-specific metabolic rates by the speed of the

walking trial.  Additionally, walking transport costs were standardized to body length by dividing net, mass-specific 

transport costs by stature to obtain the net, mass-specific metabolic energy expended to travel a distance equal to the 

height of the body (J•kg
-1). 

Walking kinematics 

The durations of each stride and foot-ground contact period were determined from 30 Hz video (Sony model DCR-

TRV19; 30 Hz) by counting the frames during slow playback over 25 consecutive contact periods of the same foot.  

Stride time (tstr) was defined as the time elapsing between consecutive foot strikes of the same foot.  Stride length 

(Lstr) was determined by multiplying stride time by belt speed.  Foot-ground contact time (tc) was determined from 

the number of frames a single foot was in contact with the treadmill belt.  Duty factor was determined by dividing 

foot-ground contact time by stride time (tc /tstr).  An index of equivalent speed (U) was determined from walking 

speed (V), leg length (Lleg) and gravity (g) using the Froude number: U = V2
•g-1

•Lleg
-1.  Leg lengths were measured

by palpating the hip joint axis of rotation during standing and slow swinging of the limb in the sagittal plane.  One 

subject (stature - 1.77 m) in group D was not available for leg length measurements after completing the metabolic 

testing. 

The scaling of walking transport costs with body size 

Best-fit exponential relationships between the minimum measured metabolic cost of transport (Etrans-min) and both 

stature and body mass were conducted on both our original stature group means and on these original data plus 

qualifying group means taken from the literature.  Literature values were included only from those studies that 

provided the information necessary to conduct the same analysis as that performed on our original data: stature, body 

mass and steady-state gross metabolic rates during level walking across a sufficient number of speeds to exhibit a 

minimum.  A data point was considered a valid minimum only when greater values from both faster and slower 

speeds were also reported.  Our literature search of more than 115 original potentially qualifying studies dating from 

the early 1900’s forward yielded 25 group means that satisfied these criteria.  We did not include data points from 

subjects ≥ 65 years of age, because they may not walk in a dynamically similar manner to individuals who are less 

than 65 years old (Ortega and Farley, 2007).  Qualifying literature data and sources are reported in Table 2. 
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In addition to predicting a stature scaling exponent of -1.0 for human walking economy, our theoretical 

framework can also be used to predict a scaling exponent for body mass.  Among geometrically similar subjects, 

body mass (Mb) increases with stature to the third power (Mb  Lb
3.0).  Therefore, given the approximate geometric

similarity we assumed a priori for our test subjects, our stature hypothesis (Etrans-min  Lb
-1.0) predicts that the mass-

specific energy cost of human walking should scale with body mass to the negative one-third power (Etrans-min  Mb
-

0.33). 

Statistics 

Group means for physical characteristics (body mass, stature, leg length) as well as the metabolic energy expended 

per stride (J•str-1), and mechanical data (stride length, duty factor, Froude number) at the most economical walking 

speed were assessed using a one-way ANOVA with a Tukey test of post-hoc means.  Gender differences in net 

metabolic rates were assessed using unpaired t-tests within each of the height groups in order to control for the effect 

of stature.  Percentage error was determined as: ((predicted – actual)/actual) x 100.  
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RESULTS 

Walking energy expenditure 

The gross, mass-specific metabolic rates measured at six walking speeds from 0.4 to 1.9 m•s
-1 conformed to patterns 

expected on the basis of stature.  These rates increased in a curvilinear fashion with walking speed for all four stature 

groups (Fig. 1A), roughly doubling from the slowest to the fastest walking speed within each group.  Group means 

ranged from an overall minimum of 2.56 ± 0.06 W•kg
-1 to a maximum of 6.80 ± 0.14 W•kg

-1.  At each of the six 

speeds, and for all 28 of the between-group comparisons possible, gross, mass-specific, metabolic rates varied in an 

inverse manner with stature, differing by a factor of one and one-half to two between the shortest and tallest groups. 

For all four stature groups, walking transport cost-speed relationships conformed to the same general 

pattern, exhibiting minimums at intermediate walking speeds, and greater values at both slower and faster ones (Fig. 

1B).  Like gross metabolic rates, net walking transport costs were inversely related to stature, with the minimums of 

the four stature groups varying by a factor of just less than one and one-half between the shortest and tallest group 

[Group A: 3.07 ± 0.14 J•kg
-1

•m
-1; Group D: 2.12 ± 0.17 J•kg

-1
•m

-1].  Within stature groups, walking transport costs 

were not related to gender. 

Walking transport costs standardized to stature, which represent the net, mass-specific metabolic cost of 

transporting one kilogram a horizontal distance equal to the body’s stature appear in Fig. 1C.  This expression 

largely eliminated the between-stature group differences that were present prior to standardization for stature.  At the 

four intermediate and most economical speeds from 0.7 through 1.6 m•s
-1, the overall mean value for the net 

metabolic energy required to travel a forward distance equal to the body’s stature was 3.93 Joules per kilogram (0.94 

calories•kg
-1). 

The mass-specific metabolic energy expended per stride at most economical walking speeds did not differ 

among the four stature groups (Table 3), and varied by an average of only 4.4% for the six between-group 

comparisons possible. 

Basal energy expenditure 

The mean basal metabolic rates for stature groups A, B, C, and D, as calculated from the Schofield et al., equations 

were: 2.18 ± 0.12, 1.55 ± 0.06, 1.31 ± 0.04, and 1.13 ± 0.03 W•kg
-1, respectively.  These values comprised 43.0, 

38.0, 34.8 and 30.9% of the gross metabolic rates measured for the respective groups at their most economical 

walking speeds.  The mean basal metabolic rate values calculated using the Schofield equations for all 25 literature 

group values included in the scaling analysis, and their fractional contributions to the total metabolic rates reported 

during walking appear in Table S1. 

The average percentage difference between the mean metabolic rates predicted by the Schofield equations 

and the actual post-absorptive resting rates measured in the six original adult subjects tested was +3.2 ± 1.4% [1.11 ± 

0.02 vs. 1.08 ± 0.02 W•kg
-1, respectively]. 

Scaling of the energy cost of human walking 
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The exponents providing the best fit between walking transport cost minimums and stature (Etrans  Lb -0.90) and mass

(Etrans  Mb -0.32), respectively, among our original four stature groups were in good agreement with our theoretical

predictions (Etrans  Lb
-1.0 and Mb

-0.33, respectively; Fig. 2A and B).  When literature values with the necessary

information: stature, body mass, and gross metabolic rates across a sufficient number of speeds to exhibit a clear 

minimum, were added to the analysis, the exponential scaling factors for stature (Etrans  Lb
-0.95) and body mass (Etrans

 Mb
-0.29) were both within 0.05 or less of the values predicted.

The relationship that best described the stature to mass relationship for our four stature groups conformed 

reasonably to our expectation of geometric similarity: Mb = 15.2 •Lb
2.83; where mass is measured in kg and stature in

meters. 

Mechanical equivalency of the most economical walking speeds 

The stature group means for the most economical walking speed, stride length to body length ratios (Lstr/Lb), duty 

factors (tc/tstr), and Froude numbers, respectively, appear in Table 3.  The most economical walking speeds of the 

respective groups increased with the linear dimensions of the body as expected (speed at Etrans-min  Lb 0.52), and the

ratio of stride length to body length, the duty factor and the Froude number were all essentially identical across the 

four different stature groups at their respective most economical walking speeds. 
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DISCUSSION 

We set out to evaluate the straightforward hypothesis that the mass-specific energy cost of human walking is set by 

stature.  Under the equivalent conditions necessary for valid comparisons, both of the empirical tests we conducted 

supported the validity of this basic idea.  In accordance with our first hypothesis, we found that the mass-specific 

energy expended per walking stride was nearly invariant among subjects who varied by a factor of more than one and 

one-half in stature and roughly six in both age and body mass.  This direct coupling of the stride cycle to the 

metabolic energy expended provides a single, simple explanation for the height, weight and age trends previously 

observed for the economy of human walking.  Next, because the stride lengths of these subjects were directly 

proportional to their heights, we found the mass-specific energy expended per unit distance traveled was inversely 

related to stature.  In the latter case, the exponents that best described the walking transport cost-stature relationship 

in our original (0.90), and original plus literature data (0.95) agreed well with the theoretical projection of our 

second hypothesis (Etrans-min  Lb
-1.0).  Accordingly, we conclude that humans spanning a broad range of ages, 

statures and masses incur the same mass-specific metabolic cost to walk a horizontal distance equal to their stature. 

 

Equivalent speeds and energy expenditure in walking gaits 

A first issue of significant concern from the outset of the study was identifying speeds that were truly equivalent for 

individuals who spanned the broad range of body sizes examined.  From the design stage forward, we recognized 

that the speed-specific nature of walking metabolic rates and transport costs, and the systematic variation of this 

speed-specificity in relation to stature would confound metabolic comparisons made at the same absolute speeds.  

We addressed this issue experimentally by making comparisons only at the most economical speeds measured for 

each of our respective stature groups.  However, we could not know a priori exactly how well this experimental 

approach would ultimately identify the equivalent speeds desired. 

Our post-hoc evaluations indicate that our empirical technique fully met the objective intended.  First, as 

expected from both intuition and mechanical principles, the walking speeds that were most economical became 

progressively faster from the shortest to the tallest stature group.  This stature-induced variability is well illustrated 

by the transport cost data of each of our four stature groups that appears in Figure 1B.  The agreement between the 

increases in speed predicted from mechanical principles in relation to body and leg lengths (speed at Etrans-min  L0.50) 

with the empirical values observed ( Lb 0.52;  Lleg 0.46) was nearly exact.  In addition to supporting the efficacy of 

the empirical approach taken, this result also supports the general validity of our original assumptions regarding 

dynamic similarity in gait and approximate geometric similarity in bodily proportions among the subjects tested.  

Additional and equally robust empirical support for mechanical equivalence was provided by the two indices 

specifically used for this purpose: the duty factor and Froude number.  As can be seen in Table 3, the duty factors 

and Froude numbers at the most economical speeds measured were all but identical across the four stature groups.  

Stride length to body length mean values were also virtually constant.  The nearly exact agreement between 

theoretical mechanical predictions and empirical metabolic results provides compelling evidence that the body’s 
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linear dimensions set both the gait and mass-specific metabolic cost patterns observed across individuals who differ 

in body size. 

The second design concern was correctly subtracting basal contributions to gross walking metabolic rates.  

We used predictive equations, rather than direct measurements for this purpose because doing so was necessary for 

the inclusion and consistent treatment of the 25 qualifying literature group data points used in our scaling analysis.  

The literature amply supports the ability of the population equations used to predict group means (De Loreonzo et 

al., 2001; Piers et al, 1997; Johnstone et al., 2006; Rodriguez et al., 2000; Schofield et al., 1985; van der Ploeg et al, 

2001), indicating an approximate accuracy of three percent for the group sizes assessed here.  Indeed, on the six 

adult subjects on whom we took direct measurements, this was the accuracy observed; the mean predicted value was 

3.2% greater than the measured value.  In specific application, the presence of a +3.2% error in the basal metabolic 

rate estimates of groups A, B, C, and D would underestimate the net metabolic rates quantified for walking by only 

1.4 to 2.2%.  These error values incorporate basal contributions to gross metabolic rates that averaged just over one-

third for these four groups (mean = 36.7%; Results and Table S1).  Thus, for our purpose of analyzing group data 

across a range of body sizes, empirical observations indicate that the technique utilized introduced negligible error 

while allowing for a consistent and considerably more comprehensive scaling analysis. 

 

 

Hypothesis Test I: Equal mass-specific energy costs per stride? 

Our first evaluation of a basic mechanistic link between stature and metabolic energy cost was a comparison of the 

net metabolic energy expended per stride at the most economical speeds for different-sized individuals.  As can be 

seen in Table 3, the mass-specific metabolic energy expended on a per stride basis was essentially invariant across 

our four stature groups while stride lengths were directly proportional to stature.  Because shorter and taller subjects 

do indeed walk in a dynamically similar fashion (Table 3), these data support the original idea that the metabolic 

energy expended to execute each walking stride at equivalent speeds is the same regardless of the stature of the 

individual.  The direct coupling of stride and metabolic rates identifies the rates at which the movements of each 

stride are completed as a critical determinant of mass-specific metabolic rates.  In contrast, existing literature amply 

indicates that the size-dependent economy of human walking cannot be explained by existing measures of the rates at 

which mechanical work is performed (Cavgna et al., 1983; Bastien et al., 2003; Schepens et al., 2004; Donelan et al., 

2002; Kuo et al., 2005). 

 In the interest of providing a simple, quantitative expression of the direct link between walking mechanics 

and energy expenditure, we averaged the mass-specific energy expended per standardized unit distance at, and 

slightly beyond, the most economical walking speeds used for both of our hypothesis tests.  For this additional 

purpose, we used the four speeds from our protocol that fall within the range of speeds that humans typically select 

during overground walking (Cavagna et al., 1983; Bornstein and Bornstein, 1976).  At the four qualifying speeds 

from 0.7 to 1.6 m•s
-1, the mean energy expended by all four stature groups to travel a forward distance equal to their 

stature was 0.94 calories per kg.  For simple application and more convenient cost estimation for individual walkers, 
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we rounded this mean to the more practical value of 1.0 calorie per kg and found that it provides a reasonable 

approximation (mean % error = 9.3%; n = 183 trials from 48 subjects) of the net, mass-specific metabolic cost of 

human walking on firm, level surfaces. 

Hypothesis Test II: Are mass-specific transport costs inversely related to stature? 

The results of our second hypothesis test: the scaling analysis conducted on our original four stature groups, also 

supported the basic validity of our original stature idea.  The exponents providing the best fit between walking 

transport cost minimums and both stature (Etrans-min  Lb -0.90) and mass (Etrans-min  Mb -0.32), respectively, were in

good agreement with our theoretical predictions (Etrans-min  Lb
-1.0 and Mb

-0.33, respectively; Fig. 2A and B).  In the

latter case, the mass exponent derived agreed with the classical value of Taylor et al., for adult birds and mammals to 

the second decimal place.  When we tested the relationship more robustly, by adding literature values with the 

necessary information: stature, body mass, and gross metabolic rates across a sufficient number of speeds to exhibit a 

clear minimum, the exponents obtained agreed as well, or perhaps slightly better, with our original predictions.  As 

can be seen in Fig. 2A and B, adding qualifying literature data (Table 2) to our original data yielded exponential 

scaling factors for stature (Etrans  Lb
-0.95) and body mass (Etrans  Mb

-0.29) that were both within 0.05 or less of the

values predicted by our stature hypothesis. 

General implications of both hypothesis tests 

In addition to providing basic support for our stature hypothesis, the human data presented here and elsewhere can 

also be used to better evaluate the possibility that body mass (Nudds et al, 2009), rather than stature may provide a 

more direct explanation for the scaling of locomotor economy with body size.  Several independent literature 

observations on humans support the opposite conclusion: that mass-specific transport costs are set by the length of 

the body and are minimally affected by variation in body mass at any given stature.  First, obese and non-obese 

subjects of the same stature walk with similar mechanics (Browning and Kram, 2005; Browning and Kram, 2006) 

and have the same or very similar mass-specific metabolic costs (Browning and Kram, 2005; Browning and Kram, 

2006; Ayub and Bar-Or, 2003).  Second, subjects who lose weight have the same mass-specific, walking metabolic 

rates when body mass changes and stature does not (Hunter et al., 2008).  Finally, a mechanistic basis for a causal 

link between mass-specific metabolic transport costs and body mass is difficult to envision whereas stature has a 

direct and highly predictable influence on the mechanics of walking (Table 3) that determine the muscular activity 

and costs incurred. 

An additional conclusion that can be drawn from the direct relationship we have identified between stature 

and human walking economy is that ontogeny has no measurable effect on the metabolic cost of human walking that 

is independent of body size.  Certainly inferior skill, coordination or perhaps mismatches between periods of 

muscular force development and muscle fiber speeds could all conceivably compromise the locomotor economy of 

children.  Yet, when we expressed metabolic costs on a per stride basis at equivalent speeds, we found no difference 
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in the mass-specific cost per stride incurred by 5-7 year-old subjects in our shortest group vs. the 20-32 year-old 

subjects in the tallest group (Table 3).  The absence of an age effect is similarly supported by the close agreement 

between the mass scaling exponents presented for human children plus adults with that established for adult 

vertebrates spanning a much greater body mass range (Taylor et al., 1981).  A more recent, but less comprehensive, 

walking-specific vertebrate scaling value (Rubenson et al., 2007) similarly supports the conclusion that children walk 

at least as economically as adults when the effect of body size is taken into account.  These observations suggest that 

humans establish mature walking patterns sometime before they reach six years of age. 

Concluding Remarks 

Although formulated for the basic purpose of relating stature and mass to the metabolic cost of human walking, the 

quantitative relationships we have identified have immediate potential application.  Walking is the primary form of 

physical activity for the large proportion of the world’s population and occurs in nearly all human habitats.  

Accordingly, dozens of predictive equations have been developed for use in clinical, military, recreational and other 

settings.  By incorporating the fundamental effect of body size, the following expressions allow the metabolic energy 

expended during human walking to be estimated from a distance covered and either stature and mass combined, or 

mass alone:  

Etrans /Mb = 3.80•Lb
-0.95 (eq. 1) 

Etrans /Mb = 7.98•Mb
-0.29 (eq. 2) 

where Etrans  is given in Joules per meter, Mb is in kilograms and Lb is in meters.  Because humans walk at or near the 

speeds that minimize the metabolic cost of walking the large majority of the time (Cavagna et al., 1983; Bornstein 

and Bornstein, 1976), these relationships allow the metabolic energy expended while walking on firm level surfaces 

to be estimated with a minimum of information.  

Finally, we note that the new scaling relationships we introduce for the walking transport costs of humans 

also have general biological implication and application.  In the former case, our finding that the transport costs of 

walking humans are substantially lower than the norms for terrestrial vertebrates (Taylor et al., 1981) by a virtually 

constant margin of one-third across the broad range of body masses examined here (Fig. 2B) can inform comparative 

and evolutionary arguments (Rubenson et al., 2007; Alexander, 2004; Carrier, 1984; Rodman and McHenry, 1980; 

Pontzer et al., 2009) that depend on quantitative estimates of the relative locomotor economy of humans.  In the 

latter case, the new scaling relationships could provide more specific estimates of the locomotor costs of early 

hominids from fossil-based estimates of stature and mass. 
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Figure Legends 

 

Fig. 1.  Mass-specific, gross metabolic rates (A), net metabolic transport costs (B) and the net metabolic transport 

costs to walk a forward distance equal to the body’s stature (C) in relation to walking speed for groups differing in 

stature.   

 

Fig. 2.  Mass-specific net metabolic transport costs in relation to stature (A) and body mass (B) at 

the most economical walking speeds illustrated on logarithmic coordinates for the original data 

presented (open and closed circles and triangles) and qualifying literature values (open squares).  

Exponential relationships of best-fit are provided for the original data, and the original data plus 

literature data points.  [Stature, original data: Etrans /Mb = 3.41•Lb
-0.90, R2 = 0.98; original + lit. 

data: Etrans /Mb = 3.80•Lb
-0.95, R2 = 0.52; Mass, original data: Etrans /Mb = 7.98•Mb

-0.31, R2 = 0.98; 

original + lit. data: Etrans /Mb = 7.98•Mb
-0.29, R2 = 0.50; Taylor et al, 1982: Etrans /Mb = 10.71•Mb

-

0.32]. 
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Abstract 

We formulated a “one-size-fits-all” model that predicts the energy requirements of level human 

walking from height, weight and walking speed.  Our three-component model theorizes that the 

energy expended per kg•stride-1 is independent of stature at mechanically equivalent walking 

speeds.  We measured steady-state rates of oxygen uptake of 78 subjects who spanned a nearly 

two-fold range of statures (1.07 to 2.11 m) and seven-fold range of body masses (16 to 112 kg) at 

treadmill speeds from 0.4 to 1.9 m•s-1.  We tested the size-independence of the model by deriving 

best-fit equations in the form of the model on four stature groups (n≥15): short, moderately-short, 

moderately-tall, and tall.  The mean walking metabolic rates predicted by these four 

independently derived equations for the same set of reference subjects (n=16; stature range: 1.30-

1.90 m) agreed with one another to within an average of 5.2±3.7% at the four intermediate 

speeds in our protocol.  We next evaluated the model’s gross predictive accuracy by dividing our 

78 subjects into 39 stature-matched pairs of experimental and validation group subjects.  The 

model best-fit equation derived on the experimental-group subjects predicted the walking 

metabolic rates of the validation-group subjects to within an average of 8.1±6.7% (R2=0.90; 

SEE=1.34 mls O2/kg-1•min-1).  The predictive error of the ACSM equation (18.0±13.1%), which 

does not include stature as a predictor, was more than twice as large for the same subject group.  

We conclude that the energy cost of level human walking can be accurately predicted from 

height, weight and walking speed. 
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Introduction 

The premise that the metabolic energy walking requires is set by gait mechanical demands is 

universally accepted.  However, in more than a century of experimentation a broad predictive 

relationship that directly links the two has not come forth.  The absence of a relationship has not 

resulted from any lack of scientific interest in the topic; hundreds of studies have investigated 

walking energetics for humans and other terrestrial species.  Indeed, one could easily conclude 

from the exhaustive literature on human walking that the relationship is too complex to be 

described in simple quantitative terms (8, 23, 32, 42, 49).  

However, the primary findings from the comparative work on terrestrial locomotion offer 

a more promising perspective (27, 31, 43, 47, 48, 58).  These classical studies identified an 

economy of scale for locomotor energy expenditure and provided a mechanistic explanation for 

its basis.  Early investigations (47) established that the energy expended to transport one kg of 

tissue one meter (E-trans, E•kg-1
•m-1) varied with the body mass (Mb) of the animal to the negative

one-third power (E-trans  Mb
-0.32).  Subsequent experiments demonstrated that at the equivalent

speeds of different-sized quadrupeds, such as trot-gallop transition speed, the mass-specific 

energy expended per stride was nearly invariant (27,45).  In this latter case, the superior economy 

of the larger animals was explained by their greater limb and stride lengths.  These results 

implied an inverse relationship between transport costs and leg lengths (E-trans  Lleg
-1.0) at

equivalents speeds. 

Although a body-size dependency of human locomotor economy has been apparent since 

the middle of the last century (5), the experimental approaches developed by comparative 
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biologists have been applied only limitedly to humans.  The few investigations of the body-size 

basis of human walking economy that have been undertaken have reported trends similar to those 

appearing in the comparative literature (21, 35, 54).  The lone human analysis quantifying the 

scaling of walking transport costs with body mass at mechanically equivalent speeds (54) 

conformed closely (E-trans  Mb
-0.29) to the classic comparative results.  This study also found that 

the mass-specific energy expended per stride at a single equivalent walking speed did not vary 

between small and large human walkers.  Thus, at the single standardized speed examined, the 

walking transport costs of humans were inversely related to leg length (E-trans  Lleg
-0.95).   

The apparent conformation of human locomotor mechanics and metabolic energetics to 

consistent patterns, and the overarching importance of walking energy expenditure for human 

health, function and physiological status, begs the question of why a mechanics-based 

relationship for predicting energy expenditure has not emerged.  A primary reason appears to be a 

lack of integration between the experimental approaches thus far employed.  Those studies 

focused on developing generalized equations for predictive purposes have typically relied more 

heavily on post-hoc statistical analyses than a priori mechanistic formulations (7, 16, 17, 37, 38, 

52).  Most have used regression analyses with limited incorporation of established knowledge or 

theory.  For example, the Pandolf et al. (38) and ACSM (3) equations, which are the current 

predictive standards, were both derived empirically and without incorporating the influence of 

gait mechanics or limb lengths.  In contrast, the more basic studies that have incorporated the 

germane physiological and mechanical relationships a priori have generally not been applied for 

predictive purposes (19, 21, 35, 54).    
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Our objective here was to develop a generalized predictive equation for human walking 

that draws on comparative traditions to more fully incorporate the influence of body size.  For 

this purpose we formulated a simple, mechanistic, whole-body model of walking metabolism and 

gait mechanics that includes three basic variables: height, weight and walking speed.  We 

acquired metabolic data across a broad range of level walking speeds for human subjects who 

spanned a two-fold range of statures and a seven-fold range of body masses to test two 

hypotheses.  First, we hypothesized that the best-fit, empirical descriptions provided by our 

model would be similar when derived from short, moderately-short, moderately-tall and tall 

human walkers.  Second, we hypothesized that our basic model would predict metabolic rates 

during level walking with appreciably greater accuracy than either of the two leading current 

standards, the ACSM and Pandolf et al. equations. 

Methods 

The Height-Weight-Speed Model 

Our three component model of walking metabolism is illustrated in Fig. 1.  Rates of energy 

expenditure are illustrated as a function of walking speed, with the former expressed in units of 

oxygen uptake per physiological convention.  Mass-specific rates of oxygen uptake typical for a 

tall adult appear on the left Y-axis while metabolic rates, expressed in multiples of the body’s 

resting rate (METs), appear on the right Y-axis.  The standardized values, theorized to apply to 

an individual of any height and weight, have been included to illustrate the model’s postulated 

applicability across a broad continuum of human body sizes.  The model partitions gross walking 

metabolic rates into three components: 1) resting metabolism, 2) minimum walking metabolism, 

and 3) speed-dependent walking metabolism.  The scientific rationale for the model follows. 
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Resting Metabolic Rate (RMR):  The model’s first component is the minimum metabolic rate 

needed to supply all the body’s tissues at rest, or resting metabolic rate.  This component, in 

contrast to the other two in the model, can be directly measured under standardized conditions.  

For modeling purposes, we have assumed that resting metabolic rates accurately represent the 

minimum metabolic rate needed to sustain the body’s tissues at rest and during exercise, and that 

this quantity is constant across different walking speeds. 

Minimum Walking Metabolic Rate (MWMR):  The model’s second component is the minimum 

metabolic rate needed, above the body’s resting rate, for walking at any speed.  We have termed 

this component the minimum walking metabolic rate.  The primary contributors to the minimum 

walking metabolic rate are the metabolic costs incurred to maintain an upright posture and 

support the body’s weight against gravity in a walking posture (10, 46).  Secondary contributors 

include the slight elevations in cardiac and pulmonary muscle activity needed to support 

increased pulmonary oxygen uptake and cardiovascular transport (46), and perhaps other factors. 

 For modeling purposes, we have assumed that the minimum walking metabolic rate, like resting 

metabolic rate, remains constant across walking speeds. 

Speed-Dependent Walking Metabolic Rates (SDWMR): The model’s third component is that 

portion of the gross walking metabolic rate attributable to walking speed.  The primary 

contributor to this third model component is the increased metabolic cost of supporting the 

body’s weight against gravity at faster walking speeds.  This cost increases with speed as muscle 

fibers with greater rates of ATP utilization are recruited to support the body’s weight during 

progressively shorter periods of foot-ground force application at faster speeds (28, 31, 40, 46).  

Secondary contributors include performing the limited mechanical work per step required to lift 
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and accelerate the body’s mass, and the relatively small metabolic cost of swinging the limbs at 

faster walking speeds.  Indirect evidence suggests that the two latter factors, although relatively 

small, do contribute to the increased slope of the metabolic rate-walking speed relationship 

across the fastest walking speeds (4, 14, 15, 18). 

Formulaic Basis of the Model:  Of the three basic predictors in the Height-Weight-Speed model, 

the most straightforward influence is that of the total weight supported against gravity, which is 

typically the weight of the body.  This direct influence is present in experimental results from 

load carriage studies (9, 26, 38), longitudinal studies involving weight loss (6, 24, 29), cross-

sectional studies comparing obese and non-obese individuals (14, 15, 33), mechanistic 

explanations of locomotor metabolism (10, 28, 31, 40, 45, 46), and in the form in which body 

mass has been widely incorporated into existing predictive equations (3, 16, 17, 19, 38, 51, 56, 

57).  All of the aforementioned experimental and predictive results are consistent with the 

conclusion that, when the other factors (height and walking speed) are held constant, a 1:1 

relationship exists between the body weight supported and the metabolic energy walking 

requires.  Hence, the widespread convention of expressing the metabolic rates observed during 

locomotion and other weight-bearing exercise in mass-specific terms enjoys extensive 

experimental support.  Accordingly, we have incorporated body mass directly into all of the 

metabolic terms in our Height-Weight-Speed model as follows:                  

   

   

   

 

VO 2-gross   = VO2-rest + C 

 + C 
1 · VO2-rest + (C 2  ·  V 

exp )· Ht 
- 1   

  

      
Resting   Metabolism   

Minimum Walking   
  

Speed - Dependent 

t 

  
  

Walking Metabolism   

(1) 
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where VO2-gross is the body’s total, or gross volume rate of oxygen uptake, VO2-rest is the body’s 

resting rate of oxygen uptake, C1 is a coefficient describing the minimum walking rate of oxygen 

uptake as a multiple of the resting rate, C2 is the coefficient that describes speed-dependent 

increases in the rate of oxygen uptake as a function of the velocity of walking, V, raised to the 

exponent, exp, divided by the height, Ht, or stature of the individual.  Hence, the sum of the 

model’s second and third metabolic components represents the metabolic rate attributable to 

walking (VO2-walk).   To be consistent with prior literature, all the terms in Eq. 1 above are 

expressed in mass-specific units of oxygen uptake of mls O2•kg
-1

•min-1.  Per our scientific

objectives and both Fig. 1 and Eq. 1, the term metabolic rate is used to refer to mass-specific 

rates of oxygen uptake throughout the manuscript.  

The quantitative form of the first of our model’s three metabolic components (VO2-rest, 

Eq. 1), the body’s resting metabolic rate, is largely self-explanatory because resting metabolic 

rates are a standard and universally accepted measure.  The second model component, the body’s 

minimum walking metabolic rate, incurred predominantly by support and postural requirements, 

was assumed to be constant across speed at a fixed multiple of the body’s resting metabolic rate 

(C1•VO2-rest , Eq. 1) largely on the basis of prior results (19, 21, 37, 54, 56).  The most 

appropriate form for the model’s third component, speed-dependent walking metabolic rate, is 

more difficult because the speed-induced increases in walking metabolic rates depend on stature 

(54).  We postulated that the speed-dependent portion of walking metabolic rates would be an 

exponential function of velocity and an inverse function of height (Vexp
•Ht-1) for the following 

reasons.  First, both mechanics-based approaches and correlational modeling have been 

consistent in the finding that the increases in walking metabolic rates that occur with speed can 
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be reasonably well described as a function of the velocity of walking squared (19,38,51,56).  

Second, among individuals who differ in body size, metabolic rate increases that occur with 

increases in walking speed are systematically greater in shorter vs. taller individuals, and 

therefore inversely related to stature (21,54).  Hence, the model’s third metabolic rate term takes 

the form of a coefficient times walking velocity raised to an exponent divided by height 

((C2•V
exp

)•Ht-1, Eq. 1).  In those instances in which exp has the theorized value of 2.0, this V2
•Ht

-

1 term reduces to units of m•s
-2. 

Our model incorporates an existing solution for identifying speeds that are mechanically 

equivalent for individuals who differ in stature.  This solution is derived from the principle of 

dynamic similarity, and has, in prior literature (1, 2, 54), taken the form of the Froude number: U 

= V2
•(g•Lleg )-1 where U is equivalent speed, V is the velocity of walking, g is gravitational

acceleration, and Lleg is leg length.  Our prior result at a single equivalent speed indicated that 

different-sized human walkers do indeed walk in a dynamically similar manner (54), which by 

definition entails stride lengths, times and forces being related to the body’s linear dimensions by 

a constant across the full continuum of body sizes (1,2).  In addition, we found that the energy 

cost per kg•stride-1 for shorter and taller individuals at the one equivalent speed examined did not 

vary.  If our prior metabolic result from one equivalent speed generalizes to other equivalent 

speeds, then a single term that includes the walking velocity squared divided by the linear 

dimensions of the body should accurately describe the speed-dependent metabolic rates of 

different individuals regardless of their height.  Here, for simplicity and ease of use, we used a 

Froude number analogue that replaced leg length with body length (i.e. height) and dropped the 

gravitational acceleration term to become: V2
•Ht-1.   
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Our equivalent speed term for this third model component led us to two specific 

predictions.  First, speed-dependent increases in mass-specific metabolic rates should be linear 

when expressed in relation to the velocity of walking squared.  Second, the differences in how 

rapidly metabolic rates increase as a function of speed for shorter vs. taller individuals should be 

an inverse function of both leg length and height.  Neither gender nor age were included in the 

model because both mechanical theory and prior empirical results (54) indicate these variables do 

not influence walking economy independently of height, weight and speed in healthy individuals 

under 50 years of age. 

Experimental Protocol and Measurements 

Subjects: Two strategies were employed to maximize the range of body sizes and walking 

metabolic rates obtained.  First, we recruited human subjects who spanned a wide range of 

heights and weights.  Second, we tested subjects across a nearly 5-fold range of walking speeds 

from 0.4 to 1.9 m•s-1.  By recruiting children as young as five years of age and enrolling a 

number of individuals whose stature exceeded 2.0 meters (> 6’ 6”), we obtained a nearly two-

fold range of statures (1.07 to 2.11 m) and seven-fold range of body masses (15.9 to 112.8 kg) in 

our subject pool.  We ultimately tested a total of 78 subjects, 45 males and 33 females, between 

the ages of 5 and 48 years.  In accordance with local Institutional Review Board policies and 

procedures adults provided written informed consent while children provided written assent 

accompanied by the written consent of a parent or legal guardian.  Subjects were healthy and 

generally free of obesity as only four of the 78 subjects had BMI values >30 kg•m
-2.  Limited 

data from 48 of the 78 subjects were reported in a prior study (54).  Height and weight were 

measured with a stadiometer and platform scale accurate to the nearest 0.001 m and 0.1 kg, 
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respectively.  Leg lengths were measured by palpating the hip joint axis of rotation during 

standing and slow swinging of the limb in the sagittal plane. 

Treadmill Testing Protocol:  Subjects were asked to walk on a level treadmill at constant speeds 

of 0.4, 0.7, 1.0, 1.3, 1.6 and 1.9 m•s
-1.  The protocol began with a 4- to 6-minute walking trial 

followed by six trials at the aforementioned speeds.  Each trial lasted long enough to obtain a 2-

minute, steady-state rate of oxygen uptake.  Speeds were administered in a staggered fashion 

beginning at 0.7 m•s
-1.  Subjects were given a 5- to 10-minute break after completion of the 

protocol before repeating all trial speeds a second time.  Some of the shortest subjects did not 

complete trials at the fastest one or two protocol speeds because they could not do so without 

running. 

Metabolic Measures:  A computerized metabolic system (Parvo Medics TrueOne 2400, Sandy, 

Utah) was used to measure rates of metabolic energy expenditure as assessed from measured 

rates of oxygen uptake (11).  Samples of expired gases during steady-state treadmill walking 

were taken and analyzed for CO2 and O2 fractions using infrared and paramagnetic gas analyzers, 

respectively.  Respiratory gases were collected using a one-way breathing valve that directed 

expired air through a pneumotach into a mixing chamber before analysis.  For each speed, rates 

of oxygen uptake were averaged over a two-minute, steady-state period and the steady-state 

values from the two protocol repetitions were averaged for subsequent data analysis (54).  

Calibration was performed using a three-liter syringe to direct air through the system at volume 

flow rates similar to ventilation rates encountered during testing.  A two-point calibration 

procedure was used to calibrate the gas analyzers using room air and a gas cylinder containing 

known concentrations of O2 and CO2 in the physiological range for expired gases.  The TrueOne 
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system was also validated in the range of rates of oxygen uptake from 0.3 to 1.01 liters•min
-1 via 

simulations using precision blended N2–CO2 mixtures according to the infusion technique 

described by Moon et al. (36).  The agreement between the rates of oxygen uptake measured by 

the TrueOne system across 15 infusion tests spanning these simulated rates of oxygen uptake was 

< 3.0% as previously reported (54).  

In previous work, we have converted measurements of oxygen uptake to metabolic rates 

or rates of energy expenditure using an energetic equivalent of oxygen of 20.1 Joules per ml of 

O2 (11).  However, given the largely applied objective of the present study and existing literature 

conventions, here we report all results as rates of oxygen uptake (mls O2•kg-1
•min -1) without 

conversion to true units of energy for ease of interpretation.   

Kinematic Measures:  Walking kinematics were obtained using a 30 Hz video (Sony model 

DCR-TRV19, 30Hz).  Stride times (tstr) were determined by counting the frames of twenty-five 

sequential contact periods of the same foot.  Stride time was defined as the time between 

successive footfalls of the same foot.  Stride frequency, the inverse of stride time, was 

determined in order to quantify the energy expended per kg•stride as previously (54, where E•kg-

1
•stride-1=VO2-walk•t-str

-1).   

Data Treatment, Analysis and Hypothesis Tests 

Data Management: Two considerations guided our model from scientific formulation to 

hypothesis testing: predictive accuracy and ease of use.  We maximized predictive accuracy by 

allowing three numerical values in our model to be those that provided the best fit to the data 

across the broad ranges of height, weight, walking speeds and metabolic rates in our data set.  

These three values were: the coefficient describing the minimum walking metabolic rates (C1), 
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the coefficient describing speed-dependent increases in metabolic rates (C2), and the exponent 

(exp) describing speed-dependent increases in metabolic rates (Eq. 1).  The optimization function 

in Excel (25; Microsoft Excel Solver, Excel 2010 version) was used for this purpose because this 

tool has the ability to identify the three aforementioned values whilst other model inputs (height, 

weight, estimated RMR, and walking velocity) were fixed at their known values.  Thus, the 

values of C1, C2 and exp that we report were those that allowed our model to best fit (i.e. 

maximized the explained variance) the experimental group metabolic rate data using a linear 

model.  We used estimated rather than measured resting metabolic rates (VO2-rest) because the 

majority of potential users do not know, and cannot acquire their measured resting values.  The 

equations of Schofield et al. that we used for this purpose (44) have been extensively validated 

and are typically accurate to within 0.5 mls O2 kg-1
•min-1 or less (22, 30, 39, 41, 50, 55).  Hence,

any error introduced by using estimated, rather than directly measured RMR values, is likely to 

constitute a very small fraction of gross metabolic rates during walking in accordance with our 

prior findings (54). 

Hypothesis Test One: We tested our first hypothesis that the best-fit, empirical descriptions 

provided by our model would not differ for human walkers of different statures in the following 

manner.  We divided our sample of 78 total subjects into four groups exclusively on the basis of 

height to obtain: a short group (A), moderately-short group (B), moderately-tall group (C) and a 

tall group (D).  We then extracted four subjects from the mid-range of statures within each of 

these groups to form a reference group with subjects who, with respect to stature, were 

representative of each of the four groups from which they were drawn.  Four fully independent 

best-fit metabolic rate-speed equations were then derived in the form of the Height-Weight-
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Speed model (Eq. 1) using the walking metabolic rate data obtained from the subjects in each of 

the four respective stature groups.  This process produced four best-fit equations with values of 

C1, C2 and exp derived independently and to optimize the model fit to subjects of different 

statures.  The number and characteristics of the subjects from the four stature and one reference 

group appear in Table 1. 

Once derived, the respective equations from each of the four stature groups were then 

used to generate predicted walking metabolic rate values at each of the six walking speeds in our 

protocol.  Our expectation was that due to the manner in which our model incorporates height, 

weight and walking speed, that the values predicted at each speed would be similar despite being 

derived on groups that differed in stature and body mass.  The subject-specific model inputs 

required to generate the predictions: height, weight and estimated RMR, were in each case 

provided by the reference group subjects to hold the input variables fully constant across the four 

predictive equations.  We specifically evaluated whether the metabolic rate predictions generated 

by the four stature group equations differed significantly by using a two-way ANOVA (α<0.05) 

that tested for the main effects of stature group and walking speed.  

Hypothesis Test Two: We tested our second hypothesis that our basic model would, after 

empirical refinement, predict walking metabolic rates during level walking appreciably more 

accurately than either the ACSM or Pandolf et al. equations as follows.  We split our sample 

total of 78 subjects into experimental and validation groups of 39 subjects each.  One subject 

from each of 39 pairs of stature-matched individuals was randomly assigned to the experimental 

group while the remaining member of the pair was assigned to the validation group.  The heights, 

weights and genders of the experimental and validation group for hypothesis test two also appear 
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in Table 1.  A best-fit equation in the form of Eq. 1 was developed from the measured metabolic 

rates of the experimental group subjects.  As with hypothesis test one, the coefficients C1 and C2 

and exponent exp were allowed to vary in order to provide the best linear fit to the metabolic rate 

data of the experimental group.  The best-fit equation derived on the experimental group was 

then used to predict the walking metabolic rates measured for the subjects in the validation group 

subjects at each of the six walking speeds.  The overall agreement between measured values and 

those predicted by the model was assessed from the proportion of total variance in walking 

metabolic rates accounted for (R2) via linear regression and deviation from the line of identity.  

The accuracy of the individual predictions was assessed using the standard error of estimate 

(SEE).  We hypothesized that the predictive error of the Height-Weight-Speed model would be 

less than half that of the ACSM and Pandolf et al. equations for the group of subjects and speeds 

tested here. 

In addition to the ACSM and Pandolf equations, and to provide a more comprehensive 

perspective on the relative predictive accuracy of our Height-Weight-Speed model, we also 

generated predictions from three other prominent predictive equations in the literature: Cotes & 

Meade (19), van der Walt & Wyndham (51), and Workman & Armstrong (56). 
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Results 

Part I - Representative Subject Data to Illustrate the Height-Weight-Speed Model 

Metabolic Rates – Gross, Net Walking, and Speed-Dependent Rates vs. Absolute Speed:  The 

gross metabolic rates of four representative subjects whose heights (A-1.15, B-1.47, C-1.78, and 

D-2.06 m) spanned a 1.8-fold range appear in Fig. 2.  The taller the individual, the lower the 

gross metabolic rates were at any given speed (Fig. 2A).  Similarly, speed-induced increases in 

these rates also tended to be smaller for taller subjects.  Differences between the shortest and 

tallest individuals in gross metabolic rates were in approximate proportion to their stature 

difference, being roughly two-fold at each of the common speeds completed.  A portion of the 

difference in gross rates was attributable to the greater RMR values estimated for the shorter 

individuals (Fig. 2D).  When the first two metabolic components of the model, estimated RMR 

and MWMR (Fig. 1, Eq. 1), were sequentially subtracted to provide net walking metabolic rates 

(gross – RMR), and subsequently speed-dependent walking metabolic rates (gross – [RMR + 

MWMR]), the patterns observed for gross rates remained largely intact, but were substantially 

reduced (Fig. 2G).  For each of the three expressions of walking metabolism, and each of the four 

individuals, metabolic rates increased in a curvilinear fashion with walking speed.  

Metabolic Rates vs. Equivalent Walking Speeds:  For the three expressions of walking 

metabolism, and each of the four individuals, metabolic rates increased in a curvilinear fashion 

with walking speed and per above, these increases tended to be smaller for the taller individuals 

(Fig. 2A, D, G).  When increases were plotted in relation to speed of walking squared, a slight 

curvilinear trend remained for each of the three metabolic expressions and for all four 
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individuals, as did small individual differences in the rates at which metabolic rates increased 

(Fig. 2B, E, H).  However, when the metabolic rate vs. speed2 relationship was subsequently 

divided by the stature of the individual, the small differences present prior to this stature 

standardization were essentially fully eliminated for all three of the metabolic expressions 

illustrated (Fig. 2 C, F, I).  Finally, when both RMR and MWMR were subtracted from gross 

metabolic rates, the slopes of the SDWMR of the four different individuals became essentially 

the same (Fig. 2I). 

Part II - Energy Expenditure per Stride at Equivalent Walking Speeds 

The mass-specific metabolic costs per stride at our index equivalent speed of V2
•Ht-1 for the four 

stature groups formed for hypothesis test one appear in Fig. 3.  Per stride costs were relatively 

constant across slower standardized speeds at values of approximately 0.12 mls O2•kg-1
•stride-1 

before increasing at the faster standardized, or equivalent, walking speeds to maximum values 

that were twice those observed at slower speeds (0.24 mls O2•kg-1
•stride-1).  The patterns across 

speed and values at slow, moderate and faster equivalent speeds were similar across all four 

stature groups.  However, a trend for the taller subjects to be slightly less economical at all of the 

standardized speeds was present.   

Part III – Hypothesis Test Outcomes  

Hypothesis Test One: One Fit from Different Body Sizes?  The gross metabolic rates predicted by 

the four independent best-fit equations derived from the four stature groups formulated to test 

hypothesis one appear in Fig. 4.  The derived values for the coefficients C1, C2 and exp for each 

of the four groups that were used to generate the predictions illustrated appear in Table 2 

accompanied by the R2 and SEE values for each of the respective within-group fits.  The 
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metabolic rates predicted using the four equations increased with speed (ANOVA, p<0.001) from 

mean values at the slowest speed of 0.4 m•s-1 of 7.5 ± 0.3 mls O2•kg-1
•min-1 to values of 19.0 ±

0.5 mls O2•kg-1
•min-1 at 1.9 m•s-1.  In addition to similar values being predicted at the different

protocol speeds, the overall pattern of increase for the metabolic rate-speed relationship was also 

similar across the four groups.  The main effect of stature group on predicted metabolic rates was 

not significant (ANOVA, p=0.13).  The mean values predicted by the four equations for the 

reference group subjects agreed with one another to within an average of 5.2 ± 3.7% across the 

four intermediate speeds in the protocol (n=16 comparisons). 

Hypothesis Test Two: A More Accurate Generalized Equation?  The relationship between the 

metabolic rates predicted by the ACSM and Pandolf et al. models and the metabolic rates 

measured for the 39 subjects in our validation group appear in Fig. 5A and B.  The proportion of 

the total variance of the walking metabolic rates measured for these subjects as provided by the 

R2 value vs. the line of identity was 0.35 and 0.40 for the ACSM and Pandolf et al. equations, 

respectively, with corresponding SEE values of 3.35 and 3.23 mls O2•kg-1
•min-1, respectively.

For the Height-Weight-Speed model derived here, the corresponding R2 value for the proportion 

of the total variance accounted for was 0.90, while the SEE for the predicted values was 1.34 mls 

O2•kg-1
•min-1 (Fig. 5C).  Hence, the error of individual prediction was roughly 2.5 times greater

for ACSM and Pandolf et al. vs. the Height-Weight-Speed model.  The relatively poorer 

predictive accuracy of the ACSM and Pandolf et al. equations resulted primarily from substantial 

under-predictions of the greater gross metabolic rates of the shorter subjects.   

In addition to the generalized equation derived from the experimental group formed to 

test hypothesis two that appears in Table 2, we also derived a simplified version of the equation 
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with C1 fixed at 1.00 and the exponent fixed at 2.00.  The accuracy of the predictions provided by 

this simpler form of the equation differed little from the original equation reported in Table 2 

(R2=0.87; SEE=1.53 mls O2•kg-1
•min-1). 

The predictive accuracy of our Height-Weight-Speed model was essentially unchanged 

when leg length (Lleg) was used as a model predictor instead of height.  In this case, the best-fit 

equation derived on the experimental group using leg length rather than height in the model 

(VO2-gross = VO2-rest + 0.097• VO2-rest + (2.56•V2.38
)•Lleg

-1) accounted for a slightly smaller 

proportion of the total variance with a slightly greater standard error of estimate (R2=0.87; 

SEE=1.49 mls O2•kg-1
•min-1) when predicting the walking metabolic rates of the validation-

group subjects.   
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Discussion 

Basic and applied motivations led us to formulate and test a simple, whole-body model that 

predicts the energy cost of level human walking from height, weight and walking speed.  The 

model is consistent with the body-size trends previously reported for human locomotor economy 

and physical principles that apply to the gait mechanics of terrestrial species from rodents to 

dinosaurs (1, 2).  In keeping with our first hypothesis, the empirical, best-fit equations in the 

form of the model independently derived from four groups of subjects who differed in both 

stature and mass (Table 2) provided similar predictions.  The mean values predicted from these 

four distinct model-derived equations for the same set of reference subjects agreed with one 

another to within an average of 5.2 ± 3.7% for the four intermediate speeds in our protocol (Fig. 

4A) that encompass the range of speeds humans typically self-select in the field (13, 18).  As 

hypothesized for our applied second hypothesis, the best-fit model equation derived on half of 

our subjects predicted the walking metabolic rates of the stature-matched remaining half to 

within 8.1 ± 6.7% on average (R2 = 0.90; SEE = 1.34 mls O2•kg-1
•min-1), and appreciably more 

accurately than existing literature alternatives.  Given the nearly two-fold range of statures and 

seven-fold range of body masses of the subjects tested, these results indicate that the answer to 

the “one fit for all sizes” question posed in our title is largely positive.  Consequently, we 

conclude that the energy cost of human walking on firm, level surfaces can be accurately 

predicted from three basic variables: height, weight and walking speed. 

 

Mechanistic Basis of the Height-Weight-Speed Model 



96 

From the outset, we postulated that a direct link between walking gait mechanics and metabolism 

would explain the stature-related trends long observed for human walking economy.  We 

expected the greater metabolic rates of shorter vs. taller individuals at any given speed, and the 

greater increases across speed (Fig. 2A, D, G) to be fully explained by greater stride frequencies 

with no appreciable differences in per stride metabolic costs (mls O2•kg-1
•stride-1).  In our model,

these expectations translated into per stride metabolic costs that were theorized to be invariant for 

subjects of different statures walking at mechanically equivalent speeds.  Did these theoretical 

expectations match the empirical results obtained?  

The walking metabolic rates of the four stature groups formed to test hypothesis one, 

when divided by respective stride rates to obtain per stride costs, were indeed similar when 

expressed in relation to our index of equivalent speed (V2
•Ht-1, Fig. 3).  Both the mean values for 

the energy expended per kg•stride-1 and the sigmoidal patterns of increase across equivalent 

speeds for the four different stature groups were largely the same, albeit with a consistent trend 

for the tallest stature group to have marginally greater values than the other three.  These results 

support the basic mechanistic premise of our model that the mass-specific metabolic energy 

expended to execute each component of the walking stride should be the same at mechanically 

equivalent speeds for individuals who differ in stature.  The coupling observed between gait 

mechanics and metabolic rates across body sizes at equivalent walking speeds provides two basic 

conclusions.  First, the size-based trends long noted for human locomotor economy across 

walking speeds and previously considered largely (37, 52, 53) or partially (21, 35) in terms of age 

are attributable to a common link between body size and gait mechanics.  Second, the mass-

specific locomotor economy of humans, like that of non-human terrestrial species (27, 45, 46), 
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has a per stride mechanistic basis that becomes evident when comparisons are at mechanically 

equivalent speeds. 

While per-stride metabolic costs can be readily assessed, the mechanistic validity of the 

three metabolic components of our model (Fig. 1), for reasons both general and specific, is more 

difficult to evaluate.  From a general standpoint, models as parsimonious as the one offered here 

inevitably simplify biological reality to some degree.  From a specific standpoint, evaluating the 

mechanistic validity of our model’s metabolic components was not an objective that directly 

aligned with our primary goal of assessing the model’s gross predictive accuracy.  These 

limitations withstanding, the contributions of the three metabolic components of the model, and 

their inferred contributions as a function of absolute and relative walking speeds did correspond 

well to theoretical expectation.  This is best illustrated by the representative data presented in Fig. 

2 in which successive metabolic components were removed to illustrate gross, net walking and 

speed-dependent walking metabolic rates, respectively, for four individuals who differed in 

stature.  These results support the model’s general validity, and suggest the model may have 

value as an experimental tool for advancing basic understanding.  In this latter regard, the 

parsimony and defined metabolic components of the model should serve as an experimental asset 

rather than a liability.  In contrast to the many empirically-derived predictive equations 

formulated with limited deterministic basis (3, 7, 16, 17, 37, 38, 52), each of the terms in our 

Height-Weight-Speed model has been defined, and therefore represents a potentially testable 

biological entity. 

Hypothesis Test One: Body-Size Independence 
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As expected for hypothesis test one, the metabolic rates predicted for the same group of subjects 

from model equations derived independently on groups of short, moderately-short, moderately-

tall, and tall subjects differed little in magnitude and not at all statistically.  When assessed at the 

intermediate speeds in our protocol that encompass the speed range humans typically self-select 

(13, 18, 34), we found the average agreement between the mean values predicted by the four 

respective equations for the same group of reference subjects was just over 5.0% (Fig. 4A).  This 

led us to conclude that the stature of the subjects on whom the model equation was derived had 

little effect on the predictions provided.  In addition to the predicted means agreeing closely with 

one another, they also were in good agreement with the values actually measured for the 

reference subjects at these intermediate speeds, with the average agreement between the means 

predicted by the four respective equations and those measured being 3.9 ± 3.7%.  In contrast, the 

predictions from five of the leading equations from the literature for the same four speeds (n=20 

comparisons) differed from each other by an average of 13.8 ± 8.4% and from the measured 

values by 9.5 ± 7.5% (Fig. 4B).   

Although our primary test of an effect of body size on the model predictions provided 

was negative, there was a consistent trend for the tallest subjects to be slightly less economical 

than strictly theorized.  This trend was first apparent in the gross metabolic rate predictions 

generated by the equation derived on the tallest subjects.  These values tended to be slightly 

greater than those predicted from the equations derived on the three shorter groups, particularly at 

the slowest walking speeds (Fig. 4A).  Mathematically, these small predictive differences 

resulted from best-fit values for the coefficient C1, which describes the increase above RMR 

constituted by the minimum walking metabolic rate, being greatest for the tallest group (Table 2). 
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 Indeed, across the four groups, the C1 values derived increased slightly, but consistently, with 

the mean stature of the group.  Because these C1 differences were small, the resulting differences 

in metabolic rates predicted were also small, with little effect being discernible in the predictions 

provided from the equations derived on the shortest three groups.  However, in the case of the 

tallest group, the metabolic rates predicted were slightly, but consistently greater across walking 

speeds.  While one possible explanation for the limited variation observed in the group C1 values 

derived is modeling artifact, empirical observations indicate otherwise.  Specifically, the slightly 

poorer per-stride economy directly measured for the tallest subject group vs. the other three 

stature groups across equivalent walking speeds (Fig. 3) indicates that a small, but measurable 

biological difference is present.  Thus, as reflected in the greater C1 values derived for the tallest 

group, our results suggest that human walking economy has a slight stature dependency even 

after gait mechanics have been accounted for.  For reasons not yet clear, tall individuals walk 

slightly less economically in terms of mass-specific per-stride metabolic costs and related gait 

mechanics that are incorporated into our model. 

 

Hypothesis Test Two: Predictive Accuracy  

Fair consideration of the relative predictive accuracy of the two leading literature equations 

evaluated here warrants the acknowledgment of two factors.  First, in contrast to the new model 

introduced here, the ACSM and Pandolf et al. equations were formulated on, and meant to be 

applied to, adult-only subject populations.  Second, both ACSM and Pandolf et al. are 

generalized equations that incorporate the influence of factors not presently included in the 

Height-Weight-Speed model.  Specifically, the ACSM equation quantifies the influence of 
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surface inclination in addition to body mass and speed (3).  The Pandolf et al. equation quantifies 

the influence of surface inclination, load carriage, speed and terrain (38).  Hence, these two 

leading literature standards were developed for, and have, a greater breadth of application than 

our Height-Weight-Speed model does at present. 

 However, a primary motivation for formulating our new model was the recognition that 

existing predictive models do not include what appears to be one of the three basic determinants 

of human walking economy: stature.  The potential consequences of omitting stature from 

predictive equations include poorer predictive accuracy and systematic error.  These 

consequences would likely be most evident in the predictions provided for a stature-stratified 

group of subjects such as that tested here.  However, given the basic influence of stature on gait 

mechanics and accompanying patterns of locomotor metabolism, predictive accuracy is likely to 

be compromised among more stature-homogeneous subjects also, but simply to a lesser degree.  

Both of these expectations were borne out in our results.  First, in the original stature-stratified 

validation group of 39 subjects, the average error of prediction from our Height-Weight-Speed 

model was less than half that of the ACSM and Pandolf et al. equations as hypothesized, being 

8.1 ± 6.7% for our model vs. 18.0 ± 13.1 and 21.0 ± 14.4% for ACSM (3) and Pandolf et al., (38) 

respectively.  The greater predictive error in these two established literature equations resulted 

primarily from consistent under-predictions of the metabolic rates of the shorter subjects in our 

sample (Fig. 5A and B).  However, when we narrowed the range of statures to include only 

subjects in the typically adult range of 1.50 to 1.90 meters, a roughly two-fold difference in 

predictive accuracy remained.  In the latter case, for the 28 subjects in the validation group within 

this range of typical adult statures, the average error of the individual predictions for the Height-
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Weight-Speed model was 8.4 ± 7.2% vs. 15.2 ± 10.7% and 17.5 ± 12.5 % for ACSM and 

Pandolf et al., respectively.  

Next, we examined the individual-case consequences of including stature, or not, in 

predictive equations using the walking metabolic rate data acquired from three individual 

subjects in our data set: one short, one of average-height, and one tall (Fig. 6A, B, and C, 

respectively).  Also appearing in the three-paneled illustration are the predictions provided for 

each individual by five, well-established literature equations that appear in Table 4: ACSM (3), 

Pandolf et al. (38), Cotes & Meade (19), van der Walt & Wyndham (51), and Workman & 

Armstrong (56), as well as the Height-Weight-Speed model introduced here.  The first four of the 

aforementioned predictive equations do not include stature as a predictor, and thus provide 

identical predictions of the mass-specific metabolic rates for each of the three individuals at each 

of the speeds illustrated.  In contrast, the metabolic rates actually measured for these individuals 

at common speeds vary over a roughly two-fold range, and do so in inverse relation to their 

statures.  Thus, the consequence of not including stature as a predictor is significant under-

estimations for the short individual and significant over-estimations for the tall individual by all 

four of the predictive equations that do not include stature. 

The accuracy of the two remaining equations illustrated, Workman & Armstrong (56) and 

the Height-Weight-Speed model, is appreciably better for the three individuals illustrated because 

these equations do include stature as a predictor.  The predictions provided across speed for each 

of the three individuals by these two equations vary inversely, to some degree, with stature, and 

therefore in greater accordance with the walking metabolic rates measured.  The stature-related 

variability present is predicted less accurately by the Workman & Armstrong equation, despite its 
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appreciably greater complexity (Table 4), because the quantitative influence of stature was 

probably not fully discerned during the development of this model.  One noteworthy comparison 

between these latter two equations is that our Height-Weight-Speed model captures a larger 

proportion of the stature-related variation with an equation that has fewer than half as many 

terms. 

 

Concluding Remarks 

The primary goal of our basic approach to integrating body size, gait mechanics and locomotor 

metabolism was to provide a translational advance in the form of an improved generalized 

equation for predicting the energy requirements of human walking on firm, level surfaces.  

Although gait mechanics and physiological function during walking are complex, our basic 

approach led to an equation with one speed-dependent term and two constants to explain the 

variation in walking metabolism introduced by both body size and walking speed.  In closing, we 

put forth several suggestions for easy utilization of the translational tool offered.  First, we 

recommend using the gender, age and mass-based RMR estimates provided by the Schofield et 

al. equations in Table 3 given their well-established accuracy and the impracticality of obtaining 

direct RMR measurements in most circumstances.  Second, because the second metabolic term in 

the model is a multiple of the first, the two can be combined into a single term.  Since the model 

value empirically identified for the second metabolic term was generally equal to the first (Table 

2, see C1 values ≈ 1.0), this combined term can be well described as the RMR multiplied by two. 

 Third, although the model exponent that originally provided the best fit to our experimental 

group data was 2.34, the predictive improvement offered vs. the theorized exponential value of 
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2.00 was negligible.  In combination, these observations lead us to offer the following simplified 

equation for general predictive purposes: 

 

VO2-gross = 2.0•VO2-rest + 5.6•V2.0
•Ht-1    (2) 

 

where VO2-gross and VO2-rest (44, Table 3) are expressed in mls O2•kg-1
•min-1, V is in m•s-1 and Ht 

is in meters.  The accuracy of prediction using the simplified expression of the model in Eq. 2 

differs negligibly from the original.  The increase in the SEE of the prediction increased by < 0.2 

mls O2•kg-1 •min-1 when using the simplified vs. originally-derived equation to predict the 

metabolic rates of the validation group subjects. 

 Clearly, additional experimental work is required to determine how well the Height-

Weight-Speed model might describe walking metabolism under conditions not tested here, such 

as graded surfaces, load carriage and variable terrain.  Nonetheless, by including the influence of 

stature on gait mechanics and walking metabolism as we have, our new model provides accurate 

predictions of the energy requirements of level walking, and does so from a concise equation 

with discrete, testable components.
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Figure Captions 

Fig. 1.  A schematic illustration of metabolic rate vs. speed that partitions the body’s total or 

gross metabolic rate into the three contributing components postulated by the Height-Weight-

Speed model: resting metabolic rate, minimum walking metabolic rate and speed-dependent 

walking metabolic rate.  Metabolic rates are provided in units of oxygen uptake rates (left-hand 

Y-axis) and multiples of the body’s resting metabolic rate (METs, right-hand Y-axis).  The rates 

of oxygen uptake plotted correspond to those of a relatively tall, non-obese adult while those 

plotted as multiples of the body’s resting metabolic rate are theorized to apply to non-obese 

individuals across a broad continuum of heights and weights. 

Fig. 2.  The walking metabolic rate-walking speed relationship of four individual subjects (A, B, 

C, D) who differ in stature, expressed in terms of the metabolic components (rows) and 

equivalent speed standardization of the Height-Weight-Speed model (columns).  Panels in the 

descending rows illustrate three metabolic rate variables: gross metabolic rates (A, B, C), gross – 

resting metabolic rates (D, E, F), and gross – (resting + minimum walking) metabolic rates (G, H, 

I), each plotted vs. three expressions of walking speed: absolute walking speed (left column 

panels), walking speed squared (middle column panels) and walking speed squared•height
-1 

(right column panels).  [Curves in the left and middle columns were fit with second-order 

polynomials while those in the right-hand column were fit with linear functions].  

Fig. 3.  The mass-specific energy expended per walking stride for the four different stature 

groups expressed as a function of equivalent walking speed.  Per stride energy expenditure at any 
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equivalent speed and across equivalent speeds was similar for short, moderately-short, 

moderately-tall and tall groups 

Fig. 4.  The gross walking metabolic rates vs. speed predicted for the same groups of reference 

subjects by each of the four Height-Weight-Speed model equations derived on the four different 

stature groups (A).  The gross metabolic rates predicted for the reference group subjects by five 

well-established predictive equations from the literature (B).  The metabolic rate means measured 

for the reference group subjects at each speed appear in both panels for comparison. 

Fig. 5.  The gross walking metabolic rates measured for the validation-group subjects vs. those 

predicted by the ACSM equation (A), the Pandolf et al. equation (B) and the Height-Weight-

Speed model (C). The error of the individual predictions (SEE) of both the ACSM and Pandolf et 

al. equations was two to three times greater than that of the Height-Weight-Speed model. 

Fig. 6.  Gross walking metabolic rates for a short (A), average height (B) and tall subject (C) 

across walking speeds vs. the rates predicted by the leading literature equations and the Height-

Weight-Speed model introduced here.  Because four of the five leading literature equations do 

not incorporate stature as a predictor, these equations systematically under-predict the walking 

metabolic rates of short individuals and over-predict the metabolic rates of tall ones.  In contrast, 

the Height-Weight-Speed model accurately accounts for most of the metabolic rate variation 

introduced by the stature of the subject. 
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Tables 

Table 1.  Physical characteristics of the subgroups for hypotheses 1 and 2 

Hypothesis 1 n (male) Age (years) Mb (kg) Lb (m) 

Stature Groups     
1 15 (6) 8.3 ± 0.8 32.9 ± 4.1 1.30 ± 0.04 
2 15 (5) 17.3 ± 2.3 58.0 ± 3.4 1.58 ± 0.01 
3 16 (9) 20.8 ± 1.3 65.5 ± 2.4 1.70 ± 0.01 
4 16 (15) 21.8 ± 0.9 87.6 ± 3.2 1.90 ± 0.03 

Reference Group 16 (10) 19.6 ± 2.9 63.5 ± 4.8 1.62 ± 0.05 

Hypothesis 2     
Experimental Group 39 (23) 17.5 ± 1.5 63.0 ± 3.6 1.63 ± 0.04 
Validation Group 39 (22) 17.9 ± 1.3 60.8 ± 3.6 1.62 ± 0.04 

Values are means ± SE 
 
 
 
 
 
 
 
 
 
 
 

Table 2.  Empirical derivations of model components 

Hypothesis 1 n C1 C2 Exponent R2 SEE 

Stature Groups       
1 15 0.87 4.37 2.74 0.90 1.30 
2 15 0.98 4.73 2.31 0.92 1.16 
3 16 1.10 3.71 2.67 0.92 1.24 
4 16 1.29 3.83 2.57 0.90 1.20 

Hypothesis 2       

Experimental Group 39 0.97 4.87 2.34 0.89 1.45 

Stature, meters 
SEE, ml·kg-1·min-1 
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Table 3.  Schofield et al. equations for predicting RMR from gender, age and body mass   

RMR, resting metabolic rate 

wt, body weight in kilograms  

RMR is in VO2 units (ml∙kg
-1

∙min-1) 

 

Age (years) Male Female  

Under 3 RMR = 8.603 - (4.388 * wt-1)  RMR = 8.43 - (4.491 * wt-1)  
 

3-10 RMR = 3.282 + (72.899 * wt-1)  RMR = 2.937 + (70.239 * wt-1)  

10-18 RMR = 2.557 + (95.149 * wt-1) RMR = 1.935 + (100.124 * wt-1)  

18-30 RMR = 2.177 + (100.055 * wt-1) RMR = 2.142 + (70.343 * wt-1)  

30-60 RMR = 1.658 + (126.209 * wt-1) RMR = 1.175 + (122.236 * wt-1)  

Over 60 RMR = 1.693 + (84.957 * wt-1) RMR = 1.313 + (95.184 * wt-1)  
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Table 4.  Prediction equations from prior literature 

Equation Reference 
VO2 (ml·kg-1·min-1) = (0.1•V) + (1.8•V•G) + 3.5 ml·kg-1·min-1 ACSM, 2006 
VO2-equiv (watts) = 1.5•M + 2.0• (M + L)(L/M)2 + ƞ(M + L)[1.5•V2 + 0.35•V•G] Pandolf et al., 1977 
VO2 (L·min-1) = 0.00800•M + 0.000245•M•V2 Cotes & Meade, 1960 
VO2 (L·min-1) = 0.00599•M + 0.000245•M•V2 van der Walt & Wyndham, 1973 
VO2 (L·min-1) = Ht• (0.0136•Ht – 0.375)-1·(1.92•V0.176 – 1.445) •

M• (0.82•V2 – 3.94•V + 9.66) •10-5 Workman & Armstrong, 1963 

V – velocity*, M - body mass**, Ht – height (inches), L – load (body mass units), G - grade (%), Ƞ - terrain factor, 
(arbitrary units). 

*Units for velocity are reference-specific as follows: V, velocity; ACSM: meters per minute (m•min-1); Pandolf et al:
meters per second (m•s

-1
); Coates & Meade: meters per minute (m•min-1); van der Walt & Wyndham: kilometers per 

hour (km•hr
-1

); Workman & Armstrong: miles per hour (mi•hr
-1). 

**Units for M are in kg for all the above equations except for Workman & Armstrong which uses body weight in 
pounds (lb). 




